A Variational Approach to Bayesian Phylogenetic Inference

被引:0
作者
Zhang, Cheng [1 ,2 ]
Matsen IV, Frederick A. [3 ,4 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[4] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Bayesian phylogenetic inference; variational inference; subsplit Bayesian networks; structured amortization; POPULATION-DYNAMICS; DNA-SEQUENCES; F-DIVERGENCE; LIKELIHOOD; MODEL; DISTRIBUTIONS; EXPLORATION; PROPOSALS; EVOLUTION; HISTORY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bayesian phylogenetic inference is currently done via Markov chain Monte Carlo (MCMC) with simple proposal mechanisms. This hinders exploration efficiency and often requires long runs to deliver accurate posterior estimates. In this paper, we present an alternative approach: a variational framework for Bayesian phylogenetic analysis. We propose combining subsplit Bayesian networks, an expressive graphical model for tree topology distributions, and a structured amortization of the branch lengths over tree topologies for a suitable variational family of distributions. We train the variational approximation via stochastic gradient ascent and adopt gradient estimators for continuous and discrete variational parameters separately to deal with the composite latent space of phylogenetic models. We show that our variational approach provides competitive performance to MCMC, while requiring much fewer (though more costly) iterations due to a more efficient exploration mechanism enabled by variational inference. Experiments on a benchmark of challenging real data Bayesian phylogenetic inference problems demonstrate the effectiveness and efficiency of our methods.
引用
收藏
页码:1 / 56
页数:56
相关论文
共 50 条
  • [31] An Introduction to Bayesian Inference via Variational Approximations
    Grimmer, Justin
    POLITICAL ANALYSIS, 2011, 19 (01) : 32 - 47
  • [32] RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language
    Hohna, Sebastian
    Landis, Michael J.
    Heath, Tracy A.
    Boussau, Bastien
    Lartillot, Nicolas
    Moore, Brian R.
    Huelsenbeck, John P.
    Ronquist, Fredrik
    SYSTEMATIC BIOLOGY, 2016, 65 (04) : 726 - 736
  • [33] ROBUST BAYESIAN PCA WITH STUDENT'S T-DISTRIBUTION: THE VARIATIONAL INFERENCE APPROACH
    Gai, Jiading
    Li, Yong
    Stevenson, Robert L.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1340 - 1343
  • [34] Bayesian estimation of Dirichlet mixture model with variational inference
    Ma, Zhanyu
    Rana, Pravin Kumar
    Taghia, Jalil
    Flierl, Markus
    Leijon, Arne
    PATTERN RECOGNITION, 2014, 47 (09) : 3143 - 3157
  • [35] Bayesian Group-Sparse Modeling and Variational Inference
    Babacan, S. Derin
    Nakajima, Shinichi
    Do, Minh N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (11) : 2906 - 2921
  • [36] Bayesian Estimation of Beta Mixture Models with Variational Inference
    Ma, Zhanyu
    Leijon, Arne
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (11) : 2160 - 2173
  • [37] Variational Bayesian inference with Gaussian-mixture approximations
    Zobay, O.
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 355 - 389
  • [38] Bayesian Inference via Variational Approximation for Collaborative Filtering
    Weng, Yang
    Wu, Lei
    Hong, Wenxing
    NEURAL PROCESSING LETTERS, 2019, 49 (03) : 1041 - 1054
  • [39] Bayesian Inference via Variational Approximation for Collaborative Filtering
    Yang Weng
    Lei Wu
    Wenxing Hong
    Neural Processing Letters, 2019, 49 : 1041 - 1054
  • [40] Bayesian inference of ancestral dates on bacterial phylogenetic trees
    Didelot, Xavier
    Croucher, Nicholas J.
    Bentley, Stephen D.
    Harris, Simon R.
    Wilson, Daniel J.
    NUCLEIC ACIDS RESEARCH, 2018, 46 (22)