A Variational Approach to Bayesian Phylogenetic Inference

被引:0
作者
Zhang, Cheng [1 ,2 ]
Matsen IV, Frederick A. [3 ,4 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[4] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Bayesian phylogenetic inference; variational inference; subsplit Bayesian networks; structured amortization; POPULATION-DYNAMICS; DNA-SEQUENCES; F-DIVERGENCE; LIKELIHOOD; MODEL; DISTRIBUTIONS; EXPLORATION; PROPOSALS; EVOLUTION; HISTORY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bayesian phylogenetic inference is currently done via Markov chain Monte Carlo (MCMC) with simple proposal mechanisms. This hinders exploration efficiency and often requires long runs to deliver accurate posterior estimates. In this paper, we present an alternative approach: a variational framework for Bayesian phylogenetic analysis. We propose combining subsplit Bayesian networks, an expressive graphical model for tree topology distributions, and a structured amortization of the branch lengths over tree topologies for a suitable variational family of distributions. We train the variational approximation via stochastic gradient ascent and adopt gradient estimators for continuous and discrete variational parameters separately to deal with the composite latent space of phylogenetic models. We show that our variational approach provides competitive performance to MCMC, while requiring much fewer (though more costly) iterations due to a more efficient exploration mechanism enabled by variational inference. Experiments on a benchmark of challenging real data Bayesian phylogenetic inference problems demonstrate the effectiveness and efficiency of our methods.
引用
收藏
页码:1 / 56
页数:56
相关论文
共 50 条
  • [21] Bayesian compositional regression with microbiome features via variational inference
    Scott, Darren A. V.
    Benavente, Ernest
    Libiseller-Egger, Julian
    Fedorov, Dmitry
    Phelan, Jody
    Ilina, Elena
    Tikhonova, Polina
    Kudryavstev, Alexander
    Galeeva, Julia
    Clark, Taane
    Lewin, Alex
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [22] A Variational Approach to Robust Bayesian Filtering
    Craft, Kyle J.
    DeMars, Kyle J.
    2024 27TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, FUSION 2024, 2024,
  • [23] Sparse Audio Inpainting with Variational Bayesian Inference
    Chantas, Giannis
    Nikolopoulos, Spiros
    Kompatsiaris, Ioannis
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2018,
  • [24] Stochastic Variational Inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1303 - 1347
  • [25] Bayesian inference: an approach to statistical inference
    Fraser, D. A. S.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 487 - 496
  • [26] Variational Inference for Large Bayesian Vector Autoregressions
    Bernardi, Mauro
    Bianchi, Daniele
    Bianco, Nicolas
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (03) : 1066 - 1082
  • [27] VARIATIONAL BAYESIAN INFERENCE FOR PAIRWISE MARKOV MODELS
    Morales, Katherine
    Petetin, Yohan
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 251 - 255
  • [28] VARIATIONAL BAYESIAN INFERENCE FOR STEREO OBJECT TRACKING
    Chantas, Giannis
    Nikolaidis, Nikos
    Pitas, Ioannis
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2439 - 2443
  • [29] Particle Gibbs sampling for Bayesian phylogenetic inference
    Wang, Shijia
    Wang, Liangliang
    BIOINFORMATICS, 2021, 37 (05) : 642 - 649
  • [30] Fidelity of hyperbolic space for Bayesian phylogenetic inference
    Macaulay, Matthew O.
    Darling, Aaron
    Fourment, Mathieu O.
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (04)