A Variational Approach to Bayesian Phylogenetic Inference

被引:0
|
作者
Zhang, Cheng [1 ,2 ]
Matsen IV, Frederick A. [3 ,4 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[4] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Bayesian phylogenetic inference; variational inference; subsplit Bayesian networks; structured amortization; POPULATION-DYNAMICS; DNA-SEQUENCES; F-DIVERGENCE; LIKELIHOOD; MODEL; DISTRIBUTIONS; EXPLORATION; PROPOSALS; EVOLUTION; HISTORY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bayesian phylogenetic inference is currently done via Markov chain Monte Carlo (MCMC) with simple proposal mechanisms. This hinders exploration efficiency and often requires long runs to deliver accurate posterior estimates. In this paper, we present an alternative approach: a variational framework for Bayesian phylogenetic analysis. We propose combining subsplit Bayesian networks, an expressive graphical model for tree topology distributions, and a structured amortization of the branch lengths over tree topologies for a suitable variational family of distributions. We train the variational approximation via stochastic gradient ascent and adopt gradient estimators for continuous and discrete variational parameters separately to deal with the composite latent space of phylogenetic models. We show that our variational approach provides competitive performance to MCMC, while requiring much fewer (though more costly) iterations due to a more efficient exploration mechanism enabled by variational inference. Experiments on a benchmark of challenging real data Bayesian phylogenetic inference problems demonstrate the effectiveness and efficiency of our methods.
引用
收藏
页码:1 / 56
页数:56
相关论文
共 50 条
  • [1] Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows
    Zhang, Cheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [2] Variational Bayesian inference for association over phylogenetic trees for microorganisms
    Hao, Xiaojuan
    Eskridge, Kent M.
    Wang, Dong
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (05) : 1140 - 1153
  • [3] Prior Density Learning in Variational Bayesian Phylogenetic Parameters Inference
    Remita, Amine M.
    Vitae, Golrokh
    Diallo, Abdoulaye Banire
    COMPARATIVE GENOMICS, RECOMB-CG 2023, 2023, 13883 : 112 - 130
  • [4] Sequential Bayesian Phylogenetic Inference
    Hoehna, Sebastian
    Hsiang, Allison Y.
    SYSTEMATIC BIOLOGY, 2024, 73 (04) : 704 - 721
  • [5] An Efficient Coalescent Epoch Model for Bayesian Phylogenetic Inference
    Bouckaert, Remco R.
    SYSTEMATIC BIOLOGY, 2022, : 1549 - 1560
  • [6] Bayesian Inference of Phylogenetic Distances: Revisiting the Eigenvalue Approach
    Penn, Matthew J.
    Scheidwasser, Neil
    Donnelly, Christl A.
    Duchene, David A.
    Bhatt, Samir
    BULLETIN OF MATHEMATICAL BIOLOGY, 2025, 87 (02)
  • [7] Adaptive Tree Proposals for Bayesian Phylogenetic Inference
    Meyer, X.
    SYSTEMATIC BIOLOGY, 2021, 70 (05) : 1015 - 1032
  • [8] Bayesian-Weighted Triplet and Quartet Methods for Species Tree Inference
    Richards, Andrew
    Kubatko, Laura
    BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (09)
  • [9] Improving the performance of Bayesian phylogenetic inference under relaxed clock models
    Zhang, Rong
    Drummond, Alexei
    BMC EVOLUTIONARY BIOLOGY, 2020, 20 (01)
  • [10] Bayesian Phylogenetic Inference using Relaxed-clocks and the Multispecies Coalescent
    Flouri, Tomas
    Huang, Jun
    Jiao, Xiyun
    Kapli, Paschalia
    Rannala, Bruce
    Yang, Ziheng
    MOLECULAR BIOLOGY AND EVOLUTION, 2022, 39 (08)