Plant lncRNA-miRNA Interaction Prediction Based on Counterfactual Heterogeneous Graph Attention Network

被引:0
|
作者
He, Yu [1 ]
Ning, ZiLan [1 ]
Zhu, XingHui [1 ]
Zhang, YinQiong [1 ]
Liu, ChunHai [2 ]
Jiang, SiWei [1 ]
Yuan, ZheMing [2 ]
Zhang, HongYan [1 ]
机构
[1] Hunan Agr Univ, Coll Informat & Intelligence, Changsha 410128, Peoples R China
[2] Hunan Agr Univ, Coll Plant Protect, Hunan Engn & Technol Res Ctr Agr Big Data Anal & D, Changsha 410128, Peoples R China
关键词
Plant; lncRNA-miRNA interaction; Graph neural network; Heterogeneous network; Counterfactual link;
D O I
10.1007/s12539-024-00652-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) provides a new perspective for understanding regulatory relationships in plant life processes. Recently, computational methods based on graph neural networks (GNNs) have been widely employed to predict lncRNA-miRNA interactions (LMIs), which compensate for the inadequacy of biological experiments. However, the low-semantic and noise of graph limit the performance of existing GNN-based methods. In this paper, we develop a novel Counterfactual Heterogeneous Graph Attention Network (CFHAN) to improve the robustness to against the noise and the prediction of plant LMIs. Firstly, we construct a real-world based lncRNA-miRNA (L-M) heterogeneous network. Secondly, CFHAN utilizes the node-level attention, the semantic-level attention, and the counterfactual links to enhance the node embeddings learning. Finally, these embeddings are used as inputs for Multilayer Perceptron (MLP) to predict the interactions between lncRNAs and miRNAs. Evaluating our method on a benchmark dataset of plant LMIs, CFHAN outperforms five state-of-the-art methods, and achieves an average AUC and average ACC of 0.9953 and 0.9733, respectively. This demonstrates CFHAN's ability to predict plant LMIs and exhibits promising cross-species prediction ability, offering valuable insights for experimental LMI researches.
引用
收藏
页码:244 / 256
页数:13
相关论文
共 50 条
  • [1] Multi-view graph neural network with cascaded attention for lncRNA-miRNA interaction prediction
    Li, Hui
    Wu, Bin
    Sun, Miaomiao
    Ye, Yangdong
    Zhu, Zhenfeng
    Chen, Kuisheng
    KNOWLEDGE-BASED SYSTEMS, 2023, 268
  • [2] LncRNA-miRNA interaction prediction from the heterogeneous network through graph embedding ensemble learning
    Zhou, Shuang
    Yue, Xiang
    Xu, Xinran
    Liu, Shichao
    Zhang, Wen
    Niu, Yanqing
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 622 - 627
  • [3] Discovering an Integrated Network in Heterogeneous Data for Predicting lncRNA-miRNA Interactions
    Hu, Pengwei
    Huang, Yu-An
    Chan, Keith C. C.
    You, Zhu-Hong
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT I, 2018, 10954 : 539 - 545
  • [4] Prediction of lncRNA-miRNA interaction based on sequence and structural information of potential binding site
    Qi, Danyang
    Wu, Chengyan
    Hao, Zhihong
    Zhang, Zheng
    Liu, Li
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 307
  • [5] Sequence pre-training-based graph neural network for predicting lncRNA-miRNA associations
    Wang, Zixiao
    Liang, Shiyang
    Liu, Siwei
    Meng, Zhaohan
    Wang, Jingjie
    Liang, Shangsong
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [6] Learning Multimodal Networks From Heterogeneous Data for Prediction of lncRNA-miRNA Interactions
    Hu, Pengwei
    Huang, Yu-An
    Chan, Keith C. C.
    You, Zhu-Hong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (05) : 1516 - 1524
  • [7] Heterogeneous Graph Attention Network for Drug-Target Interaction Prediction
    Li, Mei
    Cai, Xiangrui
    Li, Linyu
    Xu, Sihan
    Ji, Hua
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1166 - 1176
  • [8] GNMFLMI: Graph Regularized Nonnegative Matrix Factorization for Predicting LncRNA-MiRNA Interactions
    Wang, Mei-Neng
    You, Zhu-Hong
    Li, Li-Ping
    Wong, Leon
    Chen, Zhan-Heng
    Gan, Cheng-Zhi
    IEEE ACCESS, 2020, 8 : 37578 - 37588
  • [9] A Multisource Data Fusion-based Heterogeneous Graph Attention Network for Competitor Prediction
    Ye, Xiaoqing
    Sun, Yang
    Liu, Dun
    Li, Tianrui
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (02)
  • [10] LMI-DForest: A deep forest model towards the prediction of lncRNA-miRNA interactions
    Wang, Wei
    Guan, Xiaoqing
    Khan, Muhammad Tahir
    Xiong, Yi
    Wei, Dong-Qing
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 89