SOD-YOLO: Small-Object-Detection Algorithm Based on Improved YOLOv8 for UAV Images

被引:10
|
作者
Li, Yangang [1 ]
Li, Qi [1 ,2 ]
Pan, Jie [2 ]
Zhou, Ying [1 ]
Zhu, Hongliang [1 ]
Wei, Hongwei [1 ]
Liu, Chong [1 ]
机构
[1] Qilu Aerosp Informat Res Inst, Jinan 250132, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China
关键词
object detection; UAV; small objects; feature fusion;
D O I
10.3390/rs16163057
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid development of unmanned aerial vehicle (UAV) technology has contributed to the increasing sophistication of UAV-based object-detection systems, which are now extensively utilized in civilian and military sectors. However, object detection from UAV images has numerous challenges, including significant variations in the object size, changing spatial configurations, and cluttered backgrounds with multiple interfering elements. To address these challenges, we propose SOD-YOLO, an innovative model based on the YOLOv8 model, to detect small objects in UAV images. The model integrates the receptive field convolutional block attention module (RFCBAM) in the backbone network to perform downsampling, improving feature extraction efficiency and mitigating the spatial information sparsity caused by downsampling. Additionally, we developed a novel neck architecture called the balanced spatial and semantic information fusion pyramid network (BSSI-FPN) designed for multi-scale feature fusion. The BSSI-FPN effectively balances spatial and semantic information across feature maps using three primary strategies: fully utilizing large-scale features, increasing the frequency of multi-scale feature fusion, and implementing dynamic upsampling. The experimental results on the VisDrone2019 dataset demonstrate that SOD-YOLO-s improves the mAP50 indicator by 3% compared to YOLOv8s while reducing the number of parameters and computational complexity by 84.2% and 30%, respectively. Compared to YOLOv8l, SOD-YOLO-l improves the mAP50 indicator by 7.7% and reduces the number of parameters by 59.6%. Compared to other existing methods, SODA-YOLO-l achieves the highest detection accuracy, demonstrating the superiority of the proposed method.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] RMTP-YOLO: an improved dense pedestrian detection algorithm based on YOLOv8
    Li, Gang
    Luo, Hao
    Huang, Huilan
    Yu, Jian
    Huang, Chen
    Xu, Xiaoman
    Cai, Jinxiang
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [32] LWFDD-YOLO: a lightweight defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Xiao, Lei
    Li, Shujia
    Luo, Dong
    TEXTILE RESEARCH JOURNAL, 2024,
  • [33] Improved YOLOv8 Algorithm for Water Surface Object Detection
    Wang, Jie
    Zhao, Hong
    SENSORS, 2024, 24 (15)
  • [34] DPH-YOLOv8: Improved YOLOv8 Based on Double Prediction Heads for the UAV Image Object Detection
    Wang, Jian
    Li, Xinqi
    Chen, Jiafu
    Zhou, Lihui
    Guo, Linyang
    He, Zihao
    Zhou, Hao
    Zhang, Zechen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [35] Small Object Detection in UAV Images Based on YOLOv8n
    Xu, Longyan
    Zhao, Yifan
    Zhai, Yahong
    Huang, Liming
    Ruan, Chongwei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [36] Dense Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Aerial Images
    Chen, Jiahui
    Wang, Xiaohong
    Computer Engineering and Applications, 2024, 60 (03) : 100 - 109
  • [37] A Lightweight Tea Pest Detection Algorithm Based on Improved YOLOv8: YOLO-SEM
    Ye, Rong
    Shao, Guoqi
    Li, Tong
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 52 - 61
  • [38] RLGS-YOLO: an improved algorithm for metro station passenger detection based on YOLOv8
    Qin, Yaodong
    Li, Xianwang
    He, Deqiang
    Zhou, Yucun
    Li, Liangjie
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [39] FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8
    Li, Junjie
    Cheng, Mingxia
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [40] MSFE-YOLO: An Improved YOLOv8 Network for Object Detection on Drone View
    Qi, Shuaihui
    Song, Xiaofeng
    Shang, Tongfei
    Hu, Xiaochang
    Han, Kun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21