SOD-YOLO: Small-Object-Detection Algorithm Based on Improved YOLOv8 for UAV Images

被引:10
|
作者
Li, Yangang [1 ]
Li, Qi [1 ,2 ]
Pan, Jie [2 ]
Zhou, Ying [1 ]
Zhu, Hongliang [1 ]
Wei, Hongwei [1 ]
Liu, Chong [1 ]
机构
[1] Qilu Aerosp Informat Res Inst, Jinan 250132, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China
关键词
object detection; UAV; small objects; feature fusion;
D O I
10.3390/rs16163057
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid development of unmanned aerial vehicle (UAV) technology has contributed to the increasing sophistication of UAV-based object-detection systems, which are now extensively utilized in civilian and military sectors. However, object detection from UAV images has numerous challenges, including significant variations in the object size, changing spatial configurations, and cluttered backgrounds with multiple interfering elements. To address these challenges, we propose SOD-YOLO, an innovative model based on the YOLOv8 model, to detect small objects in UAV images. The model integrates the receptive field convolutional block attention module (RFCBAM) in the backbone network to perform downsampling, improving feature extraction efficiency and mitigating the spatial information sparsity caused by downsampling. Additionally, we developed a novel neck architecture called the balanced spatial and semantic information fusion pyramid network (BSSI-FPN) designed for multi-scale feature fusion. The BSSI-FPN effectively balances spatial and semantic information across feature maps using three primary strategies: fully utilizing large-scale features, increasing the frequency of multi-scale feature fusion, and implementing dynamic upsampling. The experimental results on the VisDrone2019 dataset demonstrate that SOD-YOLO-s improves the mAP50 indicator by 3% compared to YOLOv8s while reducing the number of parameters and computational complexity by 84.2% and 30%, respectively. Compared to YOLOv8l, SOD-YOLO-l improves the mAP50 indicator by 7.7% and reduces the number of parameters by 59.6%. Compared to other existing methods, SODA-YOLO-l achieves the highest detection accuracy, demonstrating the superiority of the proposed method.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios
    Wang, Gang
    Chen, Yanfei
    An, Pei
    Hong, Hanyu
    Hu, Jinghu
    Huang, Tiange
    SENSORS, 2023, 23 (16)
  • [2] SOD-YOLO: Small Object Detection Network for UAV Aerial Images
    He, Zhiqian
    Cao, Lijie
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (03) : 431 - 439
  • [3] Cross-YOLO: an object detection algorithm for UAV based on improved YOLOv8 model
    Ying Dong
    Jiahao Guo
    Fucheng Xu
    Signal, Image and Video Processing, 2025, 19 (6)
  • [4] PF-YOLO: An Improved YOLOv8 for Small Object Detection in Fisheye Images
    Cheng Zhang
    Cheng Xu
    Hongzhe Liu
    Journal of Beijing Institute of Technology, 2025, 34 (01) : 57 - 70
  • [5] Target Detection Algorithm for UAV Images Based on Improved YOLOv8
    改进 YOLOv8 的无人机航拍图像目标检测算法
    Liang, Yan (liangyan@cqupt.edu.cn), 2025, 61 (01) : 121 - 130
  • [6] Maritime Small Object Detection Algorithm in Drone Aerial Images Based on Improved YOLOv8
    Ling, Peng
    Zhang, Yihong
    Ma, Shuai
    IEEE ACCESS, 2024, 12 : 176527 - 176538
  • [7] SS-YOLOv8: small-size object detection algorithm based on improved YOLOv8 for UAV imagery
    Qu, Jinlong
    Li, Qi
    Pan, Jie
    Sun, Mingzheng
    Lu, Xingzheng
    Zhou, Ying
    Zhu, Hongliang
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [8] Small object detection based on YOLOv8 in UAV perspective
    Ning, Tao
    Wu, Wantong
    Zhang, Jin
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (03)
  • [9] Small target detection in UAV view based on improved YOLOv8 algorithm
    Zhang, Xiaoli
    Zuo, Guocai
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [10] UAV Target Detection Algorithm Based on Improved YOLOv8
    Wang, Feng
    Wang, Hongyuan
    Qin, Zhiyong
    Tang, Jiaying
    IEEE ACCESS, 2023, 11 : 116534 - 116544