Slim-YOLOv8: A fast and accurate algorithm for surface defect detection of steel strips

被引:3
|
作者
Zhao, Jia [1 ,2 ]
Liu, Song [1 ,2 ]
Tao, Han [1 ,2 ]
Liu, Wanming [1 ,2 ]
机构
[1] Hebei Normal Univ, Shijiazhuang, Hebei, Peoples R China
[2] Hebei Prov Key Lab Informat Fus & Intelligent Cont, Shijiazhuang, Hebei, Peoples R China
关键词
Steel strip; defect detection; deep learning; slim-YOLOv8; lightweight; CLASSIFICATION;
D O I
10.1177/03019233241266717
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Steel strip is an extremely important industrial material and is widely used in various industrial fields. During the production process, surface defects need to be detected quickly and accurately. This study proposes a model. This study proposes a new slim-YOLOv8 (lightweight YOLOv8) detection model. The model is based on YOLOv8 and adopts a lightweight design paradigm, which reduces the number of parameters of the model and enhances the detection real-time performance. At the same time, an online reparameterization method is introduced to enhance the feature extraction capability of the network without raising the inference cost, and to improve the model's detection accuracy for complex defects. Finally, an auxiliary training head that can provide richer gradient information is added to the model to help train the model while preventing model overfitting. The performance of slim-YOLOv8 in mean average precision and parameters was evaluated on the well-known steel strip surface defect detection dataset NEU-DET, reaching a mAP of 85.8% at IoU 0.50 and 50.3% in the IoU 0.50-0.95 range. This is an improvement of 8.3% and 3%, respectively, compared to the baseline model. Meanwhile, the number of parameters of the model was reduced from 3.0 M to 2.7 M, which is 7% lower than the baseline model. The experimental results show that slim-YOLOv8 uses a smaller number of parameters, but has higher accuracy and is able to detect various defects in the dataset well.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Improved Yolov5 Algorithm for Surface Defect Detection of Solar Cell
    Li, Pengjie
    Shan, Shuo
    Zeng, Pengzhong
    Wei, Haikun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3601 - 3605
  • [32] Steel Surface Defect Detection Using Improved Deep Learning Algorithm: ECA-SimSPPF-SIoU-Yolov5
    Ren, Fei
    Fei, Jiajie
    Li, Hongsheng
    Doma Jr, Bonifacio T.
    IEEE ACCESS, 2024, 12 : 32545 - 32553
  • [33] Surface Defect Detection based on Improved YOLOv3-Tiny Algorithm
    Yuan, Huaqing
    He, Yi
    Zheng, Xuan
    Li, Changbin
    Wu, Aiguo
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5769 - 5774
  • [34] EAD-YOLOv10: Lightweight Steel Surface Defect Detection Algorithm Research Based on YOLOv10 Improvement
    Hu, Haoyan
    Tong, Jinwu
    Wang, Haibin
    Lu, Xinyun
    IEEE ACCESS, 2025, 13 : 55382 - 55397
  • [35] Wood defect detection based on the CWB-YOLOv8 algorithm
    An, Hao
    Liang, Zhihong
    Qin, Mingming
    Huang, Yuxiang
    Xiong, Fei
    Zeng, Guojian
    JOURNAL OF WOOD SCIENCE, 2024, 70 (01)
  • [36] Fabric defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Li, Shujia
    Luo, Dong
    Tan, Gaochao
    TEXTILE RESEARCH JOURNAL, 2025, 95 (3-4) : 235 - 251
  • [37] Steel surface defect detection algorithm in complex background scenarios
    Zhao, Baiting
    Chen, Yuran
    Jia, Xiaofen
    Ma, Tianbing
    MEASUREMENT, 2024, 237
  • [38] GDM-YOLO: A Model for Steel Surface Defect Detection Based on YOLOv8s
    Zhang, Tinglin
    Pang, Huanli
    Jiang, Changhong
    IEEE ACCESS, 2024, 12 : 148817 - 148825
  • [39] Steel Surface Defect Detection Method Based on Improved YOLOv9 Network
    Zou, Jialin
    Wang, Hongcheng
    IEEE ACCESS, 2024, 12 : 124160 - 124170
  • [40] Steel Surface Defect Detection Based on Improved YOLOv7
    Li, Ming
    Wei, Lisheng
    Zheng, Bowen
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024, 2024, : 51 - 55