Polygenic scores and Mendelian randomization identify plasma proteins causally implicated in Alzheimer's disease

被引:0
作者
Cammann, Davis B. [1 ]
Lu, Yimei [1 ]
Rotter, Jerome I. [2 ]
Wood, Alexis C. [3 ]
Chen, Jingchun [1 ]
机构
[1] Univ Nevada Las Vegas, Nevada Inst Personalized Med, Las Vegas, NV 89154 USA
[2] Harbor UCLA Med Ctr, Lundquist Inst Biomed Innovat, Torrance, CA USA
[3] Baylor Coll Med, Houston, TX USA
关键词
polygenic score; Mendelian randomization; Alzheimer's disease; plasma proteins; pQTL; HEPATOCYTE GROWTH-FACTOR; GENETIC OVERLAP; VARIANTS; ASSOCIATIONS; IMMUNITY; MEMORY;
D O I
10.3389/fnins.2024.1404377
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: An increasing body of evidence suggests that neuroinflammation is one of the key drivers of late-onset Alzheimer's disease (LOAD) pathology. Due to the increased permeability of the blood-brain barrier (BBB) in older adults, peripheral plasma proteins can infiltrate the central nervous system (CNS) and drive neuroinflammation through interactions with neurons and glial cells. Because these inflammatory factors are heritable, a greater understanding of their genetic relationship with LOAD could identify new biomarkers that contribute to LOAD pathology or offer protection against it. Methods: We used a genome-wide association study (GWAS) of 90 different plasma proteins (n = 17,747) to create polygenic scores (PGSs) in an independent discovery (cases = 1,852 and controls = 1,990) and replication (cases = 799 and controls = 778) cohort. Multivariate logistic regression was used to associate the plasma protein PGSs with LOAD diagnosis while controlling for age, sex, principal components 1-2, and the number of APOE-e4 alleles as covariates. After meta-analyzing the PGS-LOAD associations between the two cohorts, we then performed a two-sample Mendelian randomization (MR) analysis using the summary statistics of significant plasma protein level PGSs in the meta-analysis as an exposure, and a GWAS of clinically diagnosed LOAD (cases = 21,982, controls = 41,944) as an outcome to explore possible causal relationships between the two. Results: We identified four plasma protein level PGSs that were significantly associated (FDR-adjusted p < 0.05) with LOAD in a meta-analysis of the discovery and replication cohorts: CX3CL1, hepatocyte growth factor (HGF), TIE2, and matrix metalloproteinase-3 (MMP-3). When these four plasma proteins were used as exposures in MR with LOAD liability as the outcome, plasma levels of HGF were inferred to have a negative causal relationship with the disease when single-nucleotide polymorphisms (SNPs) used as instrumental variables were not restricted to cis-variants (OR/95%CI = 0.945/0.906-0.984, p = 0.005). Conclusion: Our results show that plasma HGF has a negative causal relationship with LOAD liability that is driven by pleiotropic SNPs possibly involved in other pathways. These findings suggest a low transferability between PGS and MR approaches, and future research should explore ways in which LOAD and the plasma proteome may interact.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [2] Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability
    Assarsson, Erika
    Lundberg, Martin
    Holmquist, Goeran
    Bjoerkesten, Johan
    Thorsen, Stine Bucht
    Ekman, Daniel
    Eriksson, Anna
    Dickens, Emma Rennel
    Ohlsson, Sandra
    Edfeldt, Gabriella
    Andersson, Ann-Catrin
    Lindstedt, Patrik
    Stenvang, Jan
    Gullberg, Mats
    Fredriksson, Simon
    [J]. PLOS ONE, 2014, 9 (04):
  • [3] Polygenic Risk Scores in Alzheimer's Disease: Current Applications and Future Directions
    Baker, Emily
    Escott-Price, Valentina
    [J]. FRONTIERS IN DIGITAL HEALTH, 2020, 2
  • [4] A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization
    Bowden, Jack
    Del Greco, Fabiola M.
    Minelli, Cosetta
    Smith, George Davey
    Sheehan, Nuala
    Thompson, John
    [J]. STATISTICS IN MEDICINE, 2017, 36 (11) : 1783 - 1802
  • [5] Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator
    Bowden, Jack
    Smith, George Davey
    Haycock, Philip C.
    Burgess, Stephen
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (04) : 304 - 314
  • [6] Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
    Bowden, Jack
    Smith, George Davey
    Burgess, Stephen
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) : 512 - 525
  • [7] LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
    Bulik-Sullivan, Brendan K.
    Loh, Po-Ru
    Finucane, Hilary K.
    Ripke, Stephan
    Yang, Jian
    Patterson, Nick
    Daly, Mark J.
    Price, Alkes L.
    Neale, Benjamin M.
    [J]. NATURE GENETICS, 2015, 47 (03) : 291 - +
  • [8] A review of instrumental variable estimators for Mendelian randomization
    Burgess, Stephen
    Small, Dylan S.
    Thompson, Simon G.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (05) : 2333 - 2355
  • [9] Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data
    Burgess, Stephen
    Butterworth, Adam
    Thompson, Simon G.
    [J]. GENETIC EPIDEMIOLOGY, 2013, 37 (07) : 658 - 665
  • [10] Second-generation PLINK: rising to the challenge of larger and richer datasets
    Chang, Christopher C.
    Chow, Carson C.
    Tellier, Laurent C. A. M.
    Vattikuti, Shashaank
    Purcell, Shaun M.
    Lee, James J.
    [J]. GIGASCIENCE, 2015, 4