Primitively 2-universal senary integral quadratic forms

被引:1
作者
Oh, Byeong-Kweon [1 ]
Yoon, Jongheun [2 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Primitively 2-universal senary; integral quadratic forms; POSITIVE-DEFINITE; UNIVERSAL; REPRESENTATION;
D O I
10.1016/j.jnt.2024.05.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer m , a (positive definite integral) quadratic form is called primitively m-universal if it primitively represents all quadratic forms of rank m . It was proved in [9] that there are exactly 107 equivalence classes of primitively 1-universal quaternary quadratic forms. In this article, we prove that the minimal rank of primitively 2universal quadratic forms is six, and there are exactly 201 equivalence classes of primitively 2-universal senary quadratic forms. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:148 / 183
页数:36
相关论文
共 19 条
[1]  
Bhargava M., 2000, CONTEMP MATH, V272, P27, DOI [10.1090/conm/272/04395, DOI 10.1090/CONM/272/04395]
[2]   ON PRIMITIVELY UNIVERSAL QUADRATIC FORMS [J].
Budarina, N. .
LITHUANIAN MATHEMATICAL JOURNAL, 2010, 50 (02) :140-163
[3]   ON PRIMITIVELY 2-UNIVERSAL QUADRATIC FORMS [J].
Budarina, N. V. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2012, 23 (03) :435-458
[4]  
Cassels J.W.S., 1978, Rational Quadratic Forms
[5]   Quaternary quadratic forms representing all integers. [J].
Dickson, LE .
AMERICAN JOURNAL OF MATHEMATICS, 1927, 49 :39-56
[6]   Local criteria for universal and primitively universal quadratic forms [J].
Earnest, A. G. ;
Gunawardana, B. L. K. .
JOURNAL OF NUMBER THEORY, 2021, 225 :260-280
[8]  
Gerstein Larry J., 2008, Basic Quadratic Forms
[9]   Primitively universal quaternary quadratic forms [J].
Ju, Jangwon ;
Kim, Daejun ;
Kim, Kyoungmin ;
Kim, Mingyu ;
Oh, Byeong-Kweon .
JOURNAL OF NUMBER THEORY, 2023, 242 :181-207
[10]  
Kim B. M., 1999, CONT MATH, V249, P51, DOI DOI 10.1090/CONM/249/03747