Thermodynamic properties of hercynite (FeAl2O4) for thermochemical water splitting applications: A first-principles approach

被引:0
作者
Verma, Harsha [1 ]
Tripathi, Manwendra K. [1 ]
Verma, Mohan L. [2 ]
机构
[1] Natl Inst Technol Raipur, Dept Met & Mat Engn, Raipur, Chhattisgarh, India
[2] FET SSGI, Dept Appl Phys, Shri Shankaracharya Tech Campus, Bhilai, Chhattisgarh, India
关键词
Density functional theory; Thermodynamic properties; Quasi-harmonic Debye-Gr & uuml; neisen model; ELECTRONIC-STRUCTURE; OXYGEN VACANCIES; METAL-OXIDES; SOLAR; CO2; ENERGY; SPINEL; CERIA; HYDROGEN; H2O;
D O I
10.1016/j.jssc.2024.124928
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
FeAl2O4 is considered as a potential material to produce solar thermochemical hydrogen. However, its temperature and pressure dependant thermodynamic properties have not yet been well explored. In this work, firstprinciples calculations have been applied to investigate the structural, mechanical, electronic and thermodynamic properties of FeAl2O4. The temperature and pressure-dependent thermal expansion coefficient and Gr & uuml;neisen parameter have been calculated, leading to the calculation of molar heat capacity, cp = 5.50907 + 0.39378 T-202345.44153 T-2-94039T2 at 0 GPa. Change in Gibb's energy can be calculated at a given temperature and pressure during the reduction and oxidation cycle to computationally assess the suitability of FeAl2O4, as a catalyst for thermochemical water splitting. This approach may be further extended using suitable substitution and subsequent compositional variation of Fe and Al atoms, to explore more efficient catalyst.
引用
收藏
页数:10
相关论文
共 85 条
  • [1] High-Throughput Computation of New Carbon Allotropes with Diverse Hybridization and Ultrahigh Hardness
    Al-Fahdi, Mohammed
    Rodriguez, Alejandro
    Ouyang, Tao
    Hu, Ming
    [J]. CRYSTALS, 2021, 11 (07)
  • [2] [Anonymous], 1992, Smithells Metals Reference Book, V7th
  • [3] [Anonymous], 2014, CRC Handbook of Chemistry and Physics, V95th, P3
  • [4] CoFe2O4 on a porous Al2O3 nanostructure for solar thermochemical CO2 splitting
    Arifin, Darwin
    Aston, Victoria J.
    Liang, Xinhua
    McDaniel, Anthony H.
    Weimer, Alan W.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) : 9438 - 9443
  • [5] FactSage thermochemical software and databases, 2010-2016
    Bale, C. W.
    Belisle, E.
    Chartrand, P.
    Decterov, S. A.
    Eriksson, G.
    Gheribi, A. E.
    Hack, K.
    Jung, I. -H.
    Kang, Y. -B.
    Melancon, J.
    Pelton, A. D.
    Petersen, S.
    Robelin, C.
    Sangster, J.
    Spencer, P.
    Van Ende, M-A.
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2016, 54 : 35 - 53
  • [6] BaCe0.25Mn0.75O3-δ-a promising perovskite-type oxide for solar thermochemical hydrogen production
    Barcellos, Debora R.
    Sanders, Michael D.
    Tong, Jianhua
    McDaniel, Anthony H.
    O'Hayre, Ryan P.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) : 3256 - 3265
  • [7] Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: A review
    Bayon, Alicia
    de la Calle, Alberto
    Ghose, Krishna Kamol
    Page, Alister
    McNaughton, Robbie
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (23) : 12653 - 12679
  • [8] Structural, elastic, mechanical, and thermodynamic characteristic of NaReO3 and KReO3 perovskite oxides from first principles study
    Behera, D.
    Dixit, A.
    Kumari, K.
    Srivastava, A.
    Sharma, R.
    Mukherjee, S. K.
    Khenata, R.
    Boumaza, A.
    Bin-Omran, S.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (12)
  • [9] FULL-POTENTIAL, LINEARIZED AUGMENTED PLANE-WAVE PROGRAMS FOR CRYSTALLINE SYSTEMS
    BLAHA, P
    SCHWARZ, K
    SORANTIN, P
    TRICKEY, SB
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1990, 59 (02) : 399 - 415
  • [10] Blaha P., 2001, WIEN2K AUGMENTED PLA, V60