Metal-organic framework-derived single-atom catalysts for electrocatalytic energy conversion applications

被引:4
|
作者
Cui, Mingjin [1 ,2 ]
Xu, Bo [2 ]
Shi, Xinwei [3 ]
Zhai, Qingxi [3 ]
Dou, Yuhai [1 ]
Li, Guisheng [4 ]
Bai, Zhongchao [1 ]
Ding, Yu [3 ]
Sun, Wenping [5 ]
Liu, Huakun [1 ,6 ]
Dou, Shixue [1 ,6 ]
机构
[1] Univ Shanghai Sci & Technol, Inst Energy Mat Sci IEMS, Shanghai 200093, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Inst Adv Mat IAM, State Key Lab Organ Elect & Informat Displays, Nanjing 210023, Peoples R China
[3] Nanjing Univ, Ctr Energy Storage Mat & Technol, Jiangsu Key Lab Artificial Funct Mat, Natl Lab Solid State Microstruct,Coll Engn & Appl, Nanjing, Peoples R China
[4] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[5] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[6] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Squires Way,Innovat Campus, North Wollongong, NSW 2500, Australia
基金
国家重点研发计划;
关键词
ATOMICALLY DISPERSED FE; OXYGEN REDUCTION; ACTIVE-SITES; EFFICIENT ELECTROREDUCTION; RECENT PROGRESS; POROUS CARBONS; DOPED CARBON; DESIGN; EXCHANGE; MOF;
D O I
10.1039/d4ta03518f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are revolutionizing electrocatalytic energy conversion. This review explores their synthesis, characterization, and application, emphasizing their role in advancing sustainable energy technologies. SACs offer unprecedented efficiency and selectivity by dispersing individual metal atoms on a support material. This maximizes active site utilization and minimizes material usage compared to traditional catalysts. Various synthesis strategies, such as bimetallic MOF pyrolysis and ligand-coordinated anchoring, enable precise control over SACs properties. Characterization techniques like electron microscopy and spectroscopy reveal SACs structures and properties. Electron microscopy visualizes SACs morphology, while spectroscopy provides insights into metal atom coordination. In practical applications, MOF-supported SACs excel in proton-exchange membrane fuel cells (PEMFCs), direct formic acid fuel cells (DFAFCs), and Zn-air batteries (ZABs). They catalyze essential reactions, such as oxygen reduction and hydrogen oxidation, enhancing PEMFC efficiency and durability. In ZABs, SACs improve oxygen reduction and evolution reactions, boosting battery performance and stability. This review underscores the potential of MOF-derived SACs in sustainable energy conversion. By detailing synthesis, characterization, and applications, it contributes to the development of efficient catalysts for renewable energy technologies. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are revolutionizing electrocatalytic energy conversion.
引用
收藏
页码:18921 / 18947
页数:27
相关论文
共 50 条
  • [31] Graphene oxide-derived single-atom catalysts for electrochemical energy conversion
    Liu, Jian-Bin
    Gong, Hai-Sheng
    Ye, Gong-Lan
    Fei, Hui-Long
    RARE METALS, 2022, 41 (05) : 1703 - 1726
  • [32] Single-atom catalysts templated by metal-organic frameworks for electrochemical nitrogen reduction
    Zhang, Rui
    Jiao, Long
    Yang, Weijie
    Wan, Gang
    Jiang, Hai-Long
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (46) : 26371 - 26377
  • [33] Strategies for the Preparation of Single-Atom Catalysts Using Low-Dimensional Metal-Organic Frameworks
    Lu, Yi
    Ke, Zhihai
    SMALL, 2024, 20 (42)
  • [34] Synthesis of MXene-based single-atom catalysts for energy conversion applications
    Din, Muhammad Aizaz Ud
    Shah, Syed Shoaib Ahmad
    Javed, Muhammad Sufyan
    Sohail, Manzar
    ur Rehman, Aziz
    Nazir, Muhammad Altaf
    Assiri, Mohammed A.
    Najam, Tayyaba
    Cheng, Nanpu
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [35] A metal-organic framework-derived bifunctional oxygen electrocatalyst
    Xia, Bao Yu
    Yan, Ya
    Li, Nan
    Wu, Hao Bin
    Lou, Xiong Wen
    Wang, Xin
    NATURE ENERGY, 2016, 1
  • [36] Framework-Derived Tungsten Single-Atom Catalyst for Oxygen Reduction Reaction
    Jiang, Bizhi
    Sun, Hao
    Yuan, Tao
    He, Wenhao
    Zheng, Changlin
    Zhang, Hui-Juan
    Yang, Junhe
    Zheng, Shiyou
    ENERGY & FUELS, 2021, 35 (09) : 8173 - 8180
  • [37] From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications
    Hou, Chun-Chao
    Wang, Hao-Fan
    Li, Caixia
    Xu, Qiang
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (06) : 1658 - 1693
  • [38] Metal-organic framework-derived cobalt oxide and sulfide having nanoflowers architecture for efficient energy conversion and storage
    Choi, Jonghyun
    Ingsel, Tenzin
    Neupane, Dipesh
    Mishra, Sanjay R.
    Kumar, Anuj
    Gupta, Ram K.
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [39] Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion
    Li, Xuning
    Liu, Linghui
    Ren, Xinyi
    Gao, Jiajian
    Huang, Yanqiang
    Liu, Bin
    SCIENCE ADVANCES, 2020, 6 (39):
  • [40] Metal-metal interactions in correlated single-atom catalysts
    Shan, Jieqiong
    Ye, Chao
    Jiang, Yunling
    Jaroniec, Mietek
    Zheng, Yao
    Qiao, Shi-Zhang
    SCIENCE ADVANCES, 2022, 8 (17):