This paper explores the fragility of pile-supported wharves to environmental hazards, notably climate change and corrosion, and underscores the critical need to understand the interplay between these factors when assessing structural safety. The research advocates for comprehensive methodologies that encompass climate change effects, aging, and time-dependent deterioration in evaluating the seismic fragility functions of pile- supported wharves. An examination of aging and seismic effects is performed on a representative pile-supported wharf at designated time intervals. This study highlights the pronounced impacts of climate change and corrosion on the structural integrity of concrete and steel in marine environments. Specifically, it considers effects such as sea level rise, increased temperatures, and heightened relative humidity on pile-supported wharves. Additionally, three corrosion pitting configurations in prestressed strands with and without climate change considerations are analyzed to determine their influence on the strength and ductility of materials, limit states, and ultimately, on the fragility curves. The findings indicate that climate change significantly exacerbates the corrosion of materials in pile-supported wharves, and increases failure probability. The relative increase in corrosion rate after 50 years due to climate change is found to be 94%.