Composite coatings with polymeric modified ZnO nanoparticles and nanocontainers with inhibitor for corrosion protection of low carbon steel

被引:51
作者
Kamburova, K. [1 ]
Boshkova, N. [1 ]
Boshkov, N. [1 ]
Radeva, Ts. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Phys Chem, Sofia 1113, Bulgaria
关键词
zinc coatings; composite coatings; zinc oxide particles; polymeric nanocontainers; electrodeposition; corrosion; ELECTROPHORETIC DEPOSITION; STAINLESS-STEEL; ACIDIC MEDIA; MILD-STEEL; BEHAVIOR; FILMS; POLYELECTROLYTES; ADSORPTION; LAYER;
D O I
10.1016/j.colsurfa.2020.125741
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Incorporation of zinc oxide (ZnO) nanoparticles and ZnO based nanocontainers with corrosion inhibitor Safranin into the matrix of standard zinc coatings is applied for preparation of coatings with improved corrosion protection for mild steel. A cationic polyelectrolyte polyethylenimine (PEI) is used to stabilize the ZnO suspension before electrodeposition of the ZnO nanoparticles on the steel surface. Encapsulation of Safranin is realized in polymer coatings on ZnO nanoparticles prepared using layer-by-layer assembly of polyacrylic acid (PAA) and PEI. The average size and surface charge of the PEI coated ZnO nanoparticles and ZnO based nanocontainers with inhibitor are identified using dynamic and electric light scattering methods and microelectrophoresis. The ZnO nanoparticles or ZnO nanocontainers are electrodeposited on steel (cathode) substrates at pH 7.5 to minimize the effect of ZnO dissolution. In a second step, ordinary zinc coatings are electrodeposited on the ZnO nanoparticles or ZnO nanocontainers covered steel samples from zinc sulfate electrolyte at pH 4.5-5.0. The surface morphology of the coatings and their corrosion behavior are studied by scanning electron microscopy and electrochemical methods potentiodynamic polarization and polarization resistance. The results show better corrosion protection of steel by composite coatings as compare to the bare zinc coating. The composite coating with inhibitor shows better protective characteristics in comparison with the other one. The two-step approach described herein can be used for preparation of composite coatings where preservation of particles functionality is required.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Effect of Si nanoparticles on the corrosion protection performance of organic coating on carbon steel in chloride environment [J].
Madhankumar, A. ;
Nagarajan, S. ;
Rajendran, N. ;
Nishimura, T. .
METALS AND MATERIALS INTERNATIONAL, 2012, 18 (06) :965-973
[42]   Electropolymerization of DPC and DPC-Metal Oxides Nanocomposites on Low Carbon Steel and Evaluating their Corrosion Protection Performance [J].
Hussain, Zainab ;
A.Saleh, Khulood .
JOURNAL OF NANOSTRUCTURES, 2023, 13 (03) :718-728
[43]   Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J].
Finkenstadt, Victoria L. ;
Cote, Gregory L. ;
Willett, J. L. .
BIOTECHNOLOGY LETTERS, 2011, 33 (06) :1093-1100
[44]   Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J].
Victoria L. Finkenstadt ;
Gregory L. Côté ;
J. L. Willett .
Biotechnology Letters, 2011, 33 :1093-1100
[45]   Thin Composite Films of Mussel Adhesive Proteins and Ceria Nanoparticles on Carbon Steel for Corrosion Protection [J].
Sababi, Majid ;
Zhang, Fan ;
Krivosheeva, Olga ;
Forslund, Mattias ;
Pan, Jinshan ;
Claesson, Per M. ;
Dedinaite, Andra .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (08) :C364-C371
[46]   Polyoxyethylene sorbitan trioleate surfactant as an effective corrosion inhibitor for carbon steel protection [J].
Ayukayeva, Valeriya N. ;
Boiko, Galina, I ;
Lyubchenko, Nina P. ;
Sarmurzina, Raushan G. ;
Mukhamedova, Rashida F. ;
Karabalin, Uzakbay S. ;
Dergunov, Sergey A. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 579
[47]   Multilayered polypyrrole-SiO2 composite coatings for functionalization of stainless steel: Characterization and corrosion protection behavior [J].
Grari, O. ;
Taouil, A. Et ;
Dhouibi, L. ;
Buron, C. C. ;
Lallemand, F. .
PROGRESS IN ORGANIC COATINGS, 2015, 88 :48-53
[48]   Modified nano-lignin as a novel biomass-derived corrosion inhibitor for enhanced corrosion resistance of carbon steel [J].
Luo, Zhi-Gang ;
Zhang, Yi ;
Wang, Huan ;
Wan, Shan ;
Song, Long-Fei ;
Liao, Bo-Kai ;
Guo, Xing-Peng .
CORROSION SCIENCE, 2024, 227
[49]   Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations [J].
Deshpande, Pravin P. ;
Vathare, Sanket S. ;
Vagge, Shashikant T. ;
Tomsik, Elena ;
Stejskal, Jaroslav .
CHEMICAL PAPERS, 2013, 67 (08) :1072-1078
[50]   Effectiveness of lanthanum triflate activated silica nanoparticles as fillers in silane films for corrosion protection of low carbon steel [J].
Balan, Poovarasi ;
Raman, R. K. Singh ;
Chan, Eng-Seng ;
Harun, M. K. ;
Swamy, Varghese .
PROGRESS IN ORGANIC COATINGS, 2016, 90 :222-234