Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis

被引:3
|
作者
Zou, Hai [1 ,2 ]
Zhang, Mengyu [3 ]
Yang, Xue [4 ]
Shou, Huafeng [5 ]
Chen, Zhenglin [6 ]
Zhu, Quanfeng [6 ]
Luo, Ting [7 ]
Mou, Xiaozhou [4 ,8 ]
Chen, Xiaoyi [4 ,8 ]
机构
[1] Fudan Univ, Shanghai Canc Ctr, Dept Crit Care Med, Shanghai 200032, Peoples R China
[2] Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai 200032, Peoples R China
[3] Xianghu Lab, Hangzhou 311231, Peoples R China
[4] Hangzhou Med Coll, Clin Res Inst, Key Lab Tumor Mol Diag & Individualized Med Zhejia, Zhejiang Prov Peoples Hosp,Affiliated Peoples Hosp, Hangzhou 310014, Peoples R China
[5] Hangzhou Med Coll, Ctr Reprod Med, Dept Gynecol, Zhejiang Prov Peoples Hosp,Affiliated Peoples Hosp, Hangzhou 310014, Peoples R China
[6] Zhejiang Chinese Med Univ, Grad Sch, Hangzhou 310053, Peoples R China
[7] Zhejiang Acad Agr Sci, Inst Agroprod Safety & Nutr, State Key Lab Managing Biot & Chem Threats Qual &, Lab Hangzhou Risk Assessment Agr Prod,Minist Agr, Hangzhou 310021, Peoples R China
[8] Hangzhou Med Coll, Zhejiang Prov Peoples Hosp, Dept Hepatobiliary & Pancreat Surg & Minimally Inv, Gen Surg,Canc Ctr,Affiliated Peoples Hosp, Hangzhou 310014, Peoples R China
来源
关键词
Cynaroside; Doxorubicin; Pyroptosis; Cardiotoxicity; Oxidative stress; INDUCED CARDIOTOXICITY; DEXRAZOXANE; APOPTOSIS;
D O I
10.1631/jzus.B2300691
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Doxorubicin (DOX) is a commonly administered chemotherapy drug for treating hematological malignancies and solid tumors; however, its clinical application is limited by significant cardiotoxicity. Cynaroside (Cyn) is a flavonoid glycoside distributed in honeysuckle, with confirmed potential biological functions in regulating inflammation, pyroptosis, and oxidative stress. Herein, the effects of Cyn were evaluated in a DOX-induced cardiotoxicity (DIC) mouse model, which was established by intraperitoneal injections of DOX (5 mg/kg) once a week for three weeks. The mice in the treatment group received dexrazoxane, MCC950, and Cyn every two days. Blood biochemistry, histopathology, immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting were conducted to investigate the cardioprotective effects and potential mechanisms of Cyn treatment. The results demonstrated the significant benefits of Cyn treatment in mitigating DIC; it could effectively alleviate oxidative stress to a certain extent, maintain the equilibrium of cell apoptosis, and enhance the cardiac function of mice. These effects were realized via regulating the transcription levels of pyroptosis-related genes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD). Mechanistically, for DOX-induced myocardial injury, Cyn could significantly modulate the expression of pivotal genes, including adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha), sirtuin 3 (SIRT3), and nuclear factor erythroid 2-related factor 2 (Nrf2). We attribute it to the mediation of AMPK/SIRT3/Nrf2 pathway, which plays a central role in preventing DOX-induced cardiomyocyte injury. In conclusion, the present study confirms the therapeutic potential of Cyn in DIC by regulating the AMPK/SIRT3/Nrf2 pathway.
引用
收藏
页码:756 / 772
页数:17
相关论文
共 50 条
  • [31] Astragalus polyphenols attenuates doxorubicin-induced cardiotoxicity by activating the PI3K/AKT/NRF2 pathway
    Bai, Xueyang
    Wei, Hua
    Liu, Gangqiong
    Li, Ling
    PLOS ONE, 2025, 20 (02):
  • [32] Salidroside reduces neuropathology in Alzheimer’s disease models by targeting NRF2/SIRT3 pathway
    Yuyuan Yao
    Zhichu Ren
    Ruihan Yang
    Yilan Mei
    Yuying Dai
    Qian Cheng
    Chong Xu
    Xiaogang Xu
    Sanying Wang
    Kyoung Mi Kim
    Ji Heon Noh
    Jian Zhu
    Ningwei Zhao
    Yong U. Liu
    Genxiang Mao
    Jian Sima
    Cell & Bioscience, 12
  • [33] Nrf2 Deficiency Exaggerates Doxorubicin-Induced Cardiotoxicity and Cardiac Dysfunction
    Li, Siying
    Wang, Wenjuan
    Niu, Ting
    Wang, Hui
    Li, Bin
    Shao, Lei
    Lai, Yimu
    Li, Huanjie
    Janicki, Joseph S.
    Wang, Xing Li
    Tang, Dongqi
    Cui, Taixing
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2014, 2014
  • [34] Ononin alleviates endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity by activating SIRT3
    Zhang, Hanlin
    Weng, Jingfan
    Sun, Shimin
    Zhou, Jiedong
    Yang, Qi
    Huang, Xingxiao
    Sun, Jing
    Pan, Miaohong
    Chi, Jufang
    Guo, Hangyuan
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2022, 452
  • [35] Acetate ameliorates doxorubicin-induced testicular toxicity by modulating Nrf2/NFkB pathway and apoptotic signaling
    Akhigbe, R.
    Adeyemi, D.
    Hamed, M.
    Akhigbe, T.
    HUMAN REPRODUCTION, 2023, 38
  • [36] Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice
    Tuo, Hu
    Li, Wenjing
    Zhao, Wei
    Zhao, Juan
    Li, Danni
    Jin, Lin
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [37] Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice
    Hu Tuo
    Wenjing Li
    Wei Zhao
    Juan Zhao
    Danni Li
    Lin Jin
    Scientific Reports, 14
  • [38] Lycopene inhibits doxorubicin-induced heart failure by inhibiting ferroptosis through the Nrf2 signaling pathway
    Huang, Rong
    Zhou, Chao
    Wang, Tianxiang
    Chen, Yuanli
    Xie, Zhouling
    Wei, Lingling
    Duan, Yajun
    Liao, Chenzhong
    Ma, Chuanrui
    Yang, Xiaoxiao
    LIFE SCIENCES, 2025, 365
  • [39] Mangiferin Inhibits Apoptosis in Doxorubicin-Induced Vascular Endothelial Cells via the Nrf2 Signaling Pathway
    Ismail, Mohammad Bani
    Rajendran, Peramaiyan
    AbuZahra, Hamad Mohammed
    Veeraraghavan, Vishnu Priya
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)
  • [40] Bnip3 mediates doxorubicin-induced cardiomyocyte pyroptosis via caspase-3/GSDME
    Zheng, Xinbin
    Zhong, Ting
    Ma, Yeshuo
    Wan, Xiaoya
    Qin, Anna
    Yao, Bifeng
    Zou, Huajiao
    Song, Yan
    Yin, Deling
    LIFE SCIENCES, 2020, 242