Label Hierarchical Structure-Aware Multi-Label Few-Shot Intent Detection via Prompt Tuning

被引:0
|
作者
Zhang, Xiaotong [1 ]
Li, Xinyi [1 ]
Liu, Han [1 ]
Liu, Xinyue [1 ]
Zhang, Xianchao [1 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
来源
PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Label hierarchical structure; multi-label few-shot intent detection; prompt tuning;
D O I
10.1145/3626772.3657947
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label intent detection aims to recognize multiple user intents behind dialogue utterances. The diversity of user utterances and the scarcity of training data motivate multi-label few-shot intent detection. However, existing methods ignore the hybrid of verb and noun within an intent, which is essential to identify the user intent. In this paper, we propose a label hierarchical structure-aware method for multi-label few-shot intent detection via prompt tuning (LHS). Firstly, for the support data, we concatenate the original utterance with the label description generated by GPT-4 to obtain the utterance-level representation. Then we construct a multi-label hierarchical structure-aware prompt model to learn the label hierarchical information. To learn more discriminative class prototypes, we devise a prototypical contrastive learning method to pull the utterances close to their corresponding intent labels and away from other intent labels. Extensive experiments on two datasets demonstrate the superiority of our method.
引用
收藏
页码:2482 / 2486
页数:5
相关论文
共 50 条
  • [31] Few-shot fake news detection via prompt-based tuning
    Gao, Wang
    Ni, Mingyuan
    Deng, Hongtao
    Zhu, Xun
    Zeng, Peng
    Hu, Xi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (06) : 9933 - 9942
  • [32] Few-Shot Stance Detection via Target-Aware Prompt Distillation
    Jiang, Yan
    Gao, Jinhua
    Shen, Huawei
    Cheng, Xueqi
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 837 - 847
  • [33] Can Triplet Loss Be Used for Multi-Label Few-Shot Classification? A Case Study
    Csanyi, Gergely Mark
    Vagi, Renato
    Megyeri, Andrea
    Fueloep, Anna
    Nagy, Daniel
    Vadasz, Janos Pal
    Uveges, Istvan
    INFORMATION, 2023, 14 (10)
  • [34] Semantic guide for semi-supervised few-shot multi-label node classification
    Xiao, Lin
    Xu, Pengyu
    Jing, Liping
    Akujuobi, Uchenna
    Zhang, Xiangliang
    INFORMATION SCIENCES, 2022, 591 : 235 - 250
  • [35] Prototypical Network with Instance-Level Attention in Multi-Label Few-Shot Learning
    Luo S.
    Zhang R.
    Pan L.
    Wu Z.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2023, 43 (04): : 403 - 409
  • [36] LEARNING FROM TAXONOMY: MULTI-LABEL FEW-SHOT CLASSIFICATION FOR EVERYDAY SOUND RECOGNITION
    Liang, Jinhua
    Phan, Huy
    Benetos, Emmanouil
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 771 - 775
  • [37] Knowledge-Guided Multi-Label Few-Shot Learning for General Image Recognition
    Chen, Tianshui
    Lin, Liang
    Chen, Riquan
    Hui, Xiaolu
    Wu, Hefeng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (03) : 1371 - 1384
  • [38] Hierarchical Mutual Prompt for Chinese Few-Shot Event Detection
    Hou, Shuxiang
    Qian, Yurong
    Chen, Jiaying
    Zhao, Jigui
    Lv, Huiyong
    Lu, Yi
    Leng, Hongyong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14878 : 389 - 397
  • [39] Incorporating target-aware knowledge into prompt-tuning for few-shot stance detection
    Wang, Shaokang
    Sun, Fuhui
    Wang, Xiaoyan
    Pan, Li
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (05)
  • [40] Zero-shot multi-label learning via label factorisation
    Shao, Hang
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    IET COMPUTER VISION, 2019, 13 (02) : 117 - 124