Label Hierarchical Structure-Aware Multi-Label Few-Shot Intent Detection via Prompt Tuning

被引:0
作者
Zhang, Xiaotong [1 ]
Li, Xinyi [1 ]
Liu, Han [1 ]
Liu, Xinyue [1 ]
Zhang, Xianchao [1 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
来源
PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Label hierarchical structure; multi-label few-shot intent detection; prompt tuning;
D O I
10.1145/3626772.3657947
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label intent detection aims to recognize multiple user intents behind dialogue utterances. The diversity of user utterances and the scarcity of training data motivate multi-label few-shot intent detection. However, existing methods ignore the hybrid of verb and noun within an intent, which is essential to identify the user intent. In this paper, we propose a label hierarchical structure-aware method for multi-label few-shot intent detection via prompt tuning (LHS). Firstly, for the support data, we concatenate the original utterance with the label description generated by GPT-4 to obtain the utterance-level representation. Then we construct a multi-label hierarchical structure-aware prompt model to learn the label hierarchical information. To learn more discriminative class prototypes, we devise a prototypical contrastive learning method to pull the utterances close to their corresponding intent labels and away from other intent labels. Extensive experiments on two datasets demonstrate the superiority of our method.
引用
收藏
页码:2482 / 2486
页数:5
相关论文
共 41 条
[1]  
[Anonymous], 2007, P 24 INT C MACH LEAR, DOI [DOI 10.1145/1273496.1273521, 10.1145/1273496.1273521]
[2]  
Clark Kevin, 2020, P 8 INT C LEARN REPR, DOI [DOI 10.48550/ARXIV.2003.10555, 10.48550/arXiv.2003.10555]
[3]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[4]  
Eric M, 2017, 18TH ANNUAL MEETING OF THE SPECIAL INTEREST GROUP ON DISCOURSE AND DIALOGUE (SIGDIAL 2017), P37
[5]  
Gunel B., 2021, P 9 INT C LEARN REPR
[6]  
Hon YT, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P1381
[7]  
Hongshen Chen, 2017, ACM SIGKDD Explorations Newsletter, V19, P25, DOI 10.1145/3166054.3166058
[8]  
Hou YT, 2021, AAAI CONF ARTIF INTE, V35, P13036
[9]   MULTI-DIMENSIONAL INFORMATION ASSOCIATION OF VEHICULAR MIMO RADAR BASED ON TRACKING ALGORITHM [J].
Huo, Jiawei ;
Hu, Kun ;
Song, Yue ;
Li, Zhongyu ;
Wu, Junjie ;
Ren, Hang ;
Deng, Huazeng .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :4816-4819
[10]  
Ishiwatari T, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7360