Supramolecular Cucurbit[5]uril Modulates the Buried SnO2/Perovskite Interface for Efficient and Stable Perovskite Solar Cells

被引:2
作者
Long, Zhihao [1 ]
Peng, Cheng [1 ]
Dong, Kaiwen [2 ]
Jiang, Haokun [1 ]
Zhu, Mingzhe [1 ]
Yan, Wenjian [1 ]
Dong, Yufei [2 ]
Jiang, Wenjuan [1 ]
Wen, Lirong [1 ]
Jiang, Xiaoqing [2 ]
Zhou, Zhongmin [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Qingdao 266042, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
基金
中国博士后科学基金;
关键词
buried interfaces; perovskite solar cells; SnO2; stability; supramolecular passivation;
D O I
10.1002/adfm.202408818
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reducing non-radiative recombination caused by defects at buried interfaces is crucial to the development of efficient and stable perovskite solar cells (PSCs). Herein, supramolecular cucurbit[5]uril (CB[5]) is introduced into the SnO2 layer, where it engages in host-guest interactions to suppress oxygen vacancies in SnO2, prevent particle aggregation, and enhance the electron mobility of SnO2. By serving as a bridging agent at the buried interface between SnO2 and the perovskite layer, CB[5] reduces the defect density and improves the carrier extraction efficiency. It also reduces the surface energy of the SnO2 substrate, facilitates the formation of large grains in the perovskite film, alleviates residual lattice stresses, and enhances the film quality. Consequently, the PSC with CB[5] shows a champion power conversion efficiency of 24.83%. Moreover, an unencapsulated device incorporating CB[5] retains more than 87% of its initial PCE under continuous illumination at the maximum power point tracking for 1000 h. This study pioneers the utilization of cucurbiturils in PSCs and provides insights into how supramolecular compounds can regulate buried interfaces.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Bulk Perovskite Crystal Properties Determined by Heterogeneous Nucleation and Growth [J].
Barua, Pranta ;
Hwang, Inchan .
MATERIALS, 2023, 16 (05)
[2]   Multifunctional organic ammonium salt-modified SnO2 nanoparticles toward efficient and stable planar perovskite solar cells [J].
Bi, Huan ;
Zuo, Xin ;
Liu, Baibai ;
He, Dongmei ;
Bai, Le ;
Wang, Wenqi ;
Li, Xiong ;
Xiao, Zeyun ;
Sun, Kuan ;
Song, Qunliang ;
Zang, Zhigang ;
Chen, Jiangzhao .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (07) :3940-3951
[3]   Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution [J].
Buschmann, HJ ;
Cleve, E ;
Jansen, K ;
Schollmeyer, E .
ANALYTICA CHIMICA ACTA, 2001, 437 (01) :157-163
[4]   Chlorinated-Ti3C2TF as a dual-functional buried interface on SnO2 electron-transporting layers for 25.09% high-performance n-i-p perovskite solar cells [J].
Cao, Ji ;
Chen, Qiaoyun ;
Wu, Wenting ;
Fu, Jianfei ;
Zhang, Zelong ;
Chen, Lei ;
Wang, Rui ;
Yu, Wei ;
Wang, Lijie ;
Nie, Xiaoting ;
Zhang, Jing ;
Zhou, Yi ;
Song, Bo ;
Li, Yongfang .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (10) :3454-3469
[5]   Solar Cell Efficiency Exceeding 25% through Rb-Based Perovskitoid Scaffold Stabilizing the Buried Perovskite Surface [J].
Chen, Jinbo ;
Dong, Hua ;
Li, Jingrui ;
Zhu, Xinyi ;
Xu, Jie ;
Pan, Fang ;
Xu, Ruoyao ;
Xi, Jun ;
Jiao, Bo ;
Hou, Xun ;
Ng, Kar Wei ;
Wang, Shuang-Peng ;
Wu, Zhaoxin .
ACS ENERGY LETTERS, 2022, 7 (10) :3685-3694
[6]   Molecular Bridge Assisted Bifacial Defect Healing Enables Low Energy Loss for Efficient and Stable Perovskite Solar Cells [J].
Deng, Jidong ;
Zhang, Huifeng ;
Wei, Kun ;
Xiao, Yuanhui ;
Zhang, Cuiping ;
Yang, Li ;
Zhang, Xiaoli ;
Wu, Deyin ;
Yang, Ye ;
Zhang, Jinbao .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (52)
[7]   Modifying SnO2 with Polyacrylamide to Enhance the Performance of Perovskite Solar Cells [J].
Dong, Haiyue ;
Wang, Jilin ;
Li, Xingyu ;
Liu, Weiting ;
Xia, Tian ;
Yao, Disheng ;
Zhang, Lixiu ;
Zuo, Chuantian ;
Ding, Liming ;
Long, Fei .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (29) :34143-34150
[8]   Synthetic Approaches for Halide Perovskite Thin Films [J].
Dunlap-Shohl, Wiley A. ;
Zhou, Yuanyuan ;
Padture, Nitin P. ;
Mitzi, David B. .
CHEMICAL REVIEWS, 2019, 119 (05) :3193-3295
[9]   Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films [J].
Gao, Qiaojiao ;
Qi, Jianhang ;
Chen, Kai ;
Xia, Minghao ;
Hu, Yue ;
Mei, Anyi ;
Han, Hongwei .
ADVANCED MATERIALS, 2022, 34 (52)
[10]  
Gerasko O.A., 2002, Russ. Chem. Rev, V71, P741, DOI DOI 10.1070/RC2002v071n09ABEH000748