A spatio-temporal predictive learning model for efficient sea surface temperature forecasting

被引:1
作者
Wang, Shaoping [1 ]
Han, Ren [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
基金
美国海洋和大气管理局;
关键词
Sea surface temperature; Sea surface temperature prediction; Spatio-temporal model; Spatio-temporal predictive learning; OCEAN; NETWORK;
D O I
10.1007/s00382-024-07348-2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Sea surface temperature (SST) significantly influences the dynamics of the global climate system, impacting climate change, marine ecosystems, and marine engineering. Traditional SST prediction methods, such as time series and machine learning models, often focus solely on temporal features and neglect spatial distribution patterns. In contrast, current deep learning techniques typically limit predictions to short-term periods. This paper introduces a novel SST prediction model that integrates both temporal and spatial dimensions, employing parallel prediction and a spatio-temporal attention mechanism to enhance accuracy. The model achieves long-term SST forecasting, significantly reduces the parameter count and computational effort, and maintains high prediction precision. Experiments in the El Ni & ntilde;o 3.4 region and the East China Sea show that this method outperforms existing deep learning approaches, accurately predicting SST over periods ranging from 7 to 60 days with superior efficiency and accuracy. Overall, this work presents an effective new approach for SST prediction with crucial implications for climate change research, marine ecosystems, and marine engineering.
引用
收藏
页码:8553 / 8571
页数:19
相关论文
共 53 条
  • [11] Atlantic Meridional Overturning Circulation: Observed Transport and Variability
    Frajka-Williams, Eleanor
    Ansorge, Isabelle J.
    Baehr, Johanna
    Bryden, Harry L.
    Chidichimo, Maria Paz
    Cunningham, Stuart A.
    Danabasoglu, Gokhan
    Dong, Shenfu
    Donohue, Kathleen A.
    Elipot, Shane
    Heimbach, Patrick
    Holliday, N. Penny
    Hummels, Rebecca
    Jackson, Laura C.
    Karstensen, Johannes
    Lankhorst, Matthias
    Le Bras, Isabela A.
    Lozier, M. Susan
    McDonagh, Elaine L.
    Meinen, Christopher S.
    Mercier, Herle
    Moat, Bengamin, I
    Perez, Renellys C.
    Piecuch, Christopher G.
    Rhein, Monika
    Srokosz, Meric A.
    Trenberth, Kevin E.
    Bacon, Sheldon
    Forget, Gael
    Goni, Gustavo
    Kieke, Dagmar
    Koelling, Jannes
    Lamont, Tarron
    McCarthy, Gerard D.
    Mertens, Christian
    Send, Uwe
    Smeed, David A.
    Speich, Sabrina
    van den Berg, Marcel
    Volkov, Denis
    Wilson, Chris
    [J]. FRONTIERS IN MARINE SCIENCE, 2019, 6
  • [12] Fu Y, 2019, AAAI CONF ARTIF INTE, P8287
  • [13] Under Pressure: Climate Change, Upwelling, and Eastern Boundary Upwelling Ecosystems
    Garcia-Reyes, Marisol
    Sydeman, William J.
    Schoeman, David S.
    Rykaczewski, Ryan R.
    Black, Bryan A.
    Smit, Albertus J.
    Bograd, Steven J.
    [J]. FRONTIERS IN MARINE SCIENCE, 2015, 2
  • [14] Guemas V, 2013, NAT CLIM CHANGE, V3, P649, DOI [10.1038/NCLIMATE1863, 10.1038/nclimate1863]
  • [15] Visual attention network
    Guo, Meng-Hao
    Lu, Cheng-Ze
    Liu, Zheng-Ning
    Cheng, Ming-Ming
    Hu, Shi-Min
    [J]. COMPUTATIONAL VISUAL MEDIA, 2023, 9 (04) : 733 - 752
  • [16] Northern North Atlantic sea surface height and ocean heat content variability
    Haekkinen, Sirpa
    Rhines, Peter B.
    Worthen, Denise L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (07) : 3670 - 3678
  • [17] A Convolutional Neural Network Using Surface Data to Predict Subsurface Temperatures in the Pacific Ocean
    Han, Mingxu
    Feng, Yuan
    Zhao, Xueli
    Sun, Chunjian
    Hong, Feng
    Liu, Chao
    [J]. IEEE ACCESS, 2019, 7 : 172816 - 172829
  • [18] Centennial-Scale Sea Surface Temperature Analysis and Its Uncertainty
    Hirahara, Shoji
    Ishii, Masayoshi
    Fukuda, Yoshikazu
    [J]. JOURNAL OF CLIMATE, 2014, 27 (01) : 57 - 75
  • [19] Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1
    Huang, Boyin
    Liu, Chunying
    Banzon, Viva
    Freeman, Eric
    Graham, Garrett
    Hankins, Bill
    Smith, Tom
    Zhang, Huai-Min
    [J]. JOURNAL OF CLIMATE, 2021, 34 (08) : 2923 - 2939
  • [20] Super-resolution of sea surface temperature with convolutional neural network- and generative adversarial network-based methods
    Izumi, Tomoki
    Amagasaki, Motoki
    Ishida, Kei
    Kiyama, Masato
    [J]. JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (04) : 1673 - 1683