A spatio-temporal predictive learning model for efficient sea surface temperature forecasting

被引:1
|
作者
Wang, Shaoping [1 ]
Han, Ren [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
关键词
Sea surface temperature; Sea surface temperature prediction; Spatio-temporal model; Spatio-temporal predictive learning; OCEAN; NETWORK;
D O I
10.1007/s00382-024-07348-2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Sea surface temperature (SST) significantly influences the dynamics of the global climate system, impacting climate change, marine ecosystems, and marine engineering. Traditional SST prediction methods, such as time series and machine learning models, often focus solely on temporal features and neglect spatial distribution patterns. In contrast, current deep learning techniques typically limit predictions to short-term periods. This paper introduces a novel SST prediction model that integrates both temporal and spatial dimensions, employing parallel prediction and a spatio-temporal attention mechanism to enhance accuracy. The model achieves long-term SST forecasting, significantly reduces the parameter count and computational effort, and maintains high prediction precision. Experiments in the El Ni & ntilde;o 3.4 region and the East China Sea show that this method outperforms existing deep learning approaches, accurately predicting SST over periods ranging from 7 to 60 days with superior efficiency and accuracy. Overall, this work presents an effective new approach for SST prediction with crucial implications for climate change research, marine ecosystems, and marine engineering.
引用
收藏
页码:8553 / 8571
页数:19
相关论文
共 50 条
  • [1] A spatio-temporal predictive learning model for efficient sea surface temperature forecasting (vol 62, pg 8553, 2024)
    Wang, Shaoping
    Han, Ren
    CLIMATE DYNAMICS, 2024, 62 (12) : 10889 - 10889
  • [2] A spatio-temporal model for Red Sea surface temperature anomalies
    Christian Rohrbeck
    Emma S. Simpson
    Ross P. Towe
    Extremes, 2021, 24 : 129 - 144
  • [3] A spatio-temporal model for Red Sea surface temperature anomalies
    Rohrbeck, Christian
    Simpson, Emma S.
    Towe, Ross P.
    EXTREMES, 2021, 24 (01) : 129 - 144
  • [4] Towards Spatio-temporal Sea Surface Temperature Forecasting via Dynamic Personalized Graph Network
    Beijing University of Posts and Telecommunications, Beijing, China
    ACM Int. Conf. Proc. Ser., (403-409):
  • [5] Spatio-Temporal Network for Sea Fog Forecasting
    Park, Jinhyeok
    Lee, Young Jae
    Jo, Yongwon
    Kim, Jaehoon
    Han, Jin Hyun
    Kim, Kuk Jin
    Kim, Young Taeg
    Kim, Seoung Bum
    SUSTAINABILITY, 2022, 14 (23)
  • [6] Deep Spatio-temporal Learning Model for Air Quality Forecasting
    Zhang, L.
    Li, D.
    Guo, Q.
    Pan, J.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2021, 16 (02) : 1 - 14
  • [7] Spatio-Temporal Complexity analysis of the Sea Surface Temperature in the Philippines
    Botin, Z. T.
    David, L. T.
    del Rosario, R. C. H.
    Parrott, L.
    OCEAN SCIENCE, 2010, 6 (04) : 933 - 947
  • [8] Efficient Spatio-Temporal Predictive Learning for Massive MIMO CSI Prediction
    CHENG Jiaming
    CHEN Wei
    LI Lun
    AI Bo
    ZTE Communications, 2025, 23 (01) : 3 - 10
  • [9] Deep Spatio-Temporal Attention Model for Grain Storage Temperature Forecasting
    Duan, Shanshan
    Yang, Weidong
    Wang, Xuyu
    Mao, Shiwen
    Zhang, Yuan
    2020 IEEE 26TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2020, : 593 - 600
  • [10] Multiscale Spatio-Temporal Attention Network for Sea Surface Temperature Prediction
    Bai, Zhenxiang
    Sun, Zhengya
    Fan, Bojie
    Liu, An-An
    Wei, Zhiqiang
    Yin, Bo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5866 - 5877