Machine learning-assisted design of high-entropy alloys for optimal strength and ductility

被引:3
作者
Singh, Shailesh Kumar [1 ,2 ]
Mahanta, Bashista Kumar [1 ,2 ]
Rawat, Pankaj [1 ,2 ]
Kumar, Sanjeev [1 ,2 ]
机构
[1] CSIR Indian Inst Petr, Climate Change & Data Sci, Dehra Dun 248005, India
[2] CSIR Indian Inst Petr, Adv Tribol Res Ctr, Dehra Dun 248005, India
关键词
High entropy alloys; Deep neural network; Genetic programming; Genetic algorithm; Microstructural characterization; MECHANICAL-PROPERTIES; PHASE; BEHAVIOR; TENSILE;
D O I
10.1016/j.jallcom.2024.176282
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High Entropy Alloys (HEAs) are a novel class of multi-component alloys with compositional flexibility, presenting a promising alternative to traditional alloys. This research aims to enhance the strength of HEAs while achieving adequate ductility, a challenging objective due to their conflicting nature. We applied evolutionary data-driven models and Bi-Objective Genetic Programming (BioGP) with genetic algorithms (GA) to accurately predict and optimize yield strength and ductility. The predictions were validated through experimental methods, including casting by vacuum arc melting and comprehensive mechanical and microstructural characterization. Our integrated approach successfully developed an HEA exhibiting a strength of 1795 +/- 21 MPa and a ductility of 31.45 %. This study highlights the effectiveness of combining data-driven models with experimental validation to advance the development of high-performance materials.
引用
收藏
页数:12
相关论文
共 44 条
  • [1] Chakraborti N., 2022, Data-driven evolutionary modeling in materials technology
  • [2] Chakraborti N, 2016, ADV CHEM MAT ENG B, P346, DOI 10.4018/978-1-5225-0290-6.ch012
  • [3] Gao M.C., 2016, Fundam. Appl., P369
  • [4] Gao M.C., 2016, High-entropy Alloys: Fundamentals and Applications
  • [5] High-entropy alloys
    George, Easo P.
    Raabe, Dierk
    Ritchie, Robert O.
    [J]. NATURE REVIEWS MATERIALS, 2019, 4 (08) : 515 - 534
  • [6] Machine-learning-based intelligent framework for discovering refractory high-entropy alloys with improved high-temperature yield strength
    Giles, Stephen A.
    Sengupta, Debasis
    Broderick, Scott R.
    Rajan, Krishna
    [J]. NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [7] Genetic Programming Evolved through Bi-Objective Genetic Algorithms Applied to a Blast Furnace
    Giri, Brijesh Kumar
    Pettersson, Frank
    Saxen, Henrik
    Chakraborti, Nirupam
    [J]. MATERIALS AND MANUFACTURING PROCESSES, 2013, 28 (07) : 776 - 782
  • [8] Database on the mechanical properties of high entropy alloys and complex concentrated alloys
    Gorsse, S.
    Nguyen, M. H.
    Senkov, O. N.
    Miracle, D. B.
    [J]. DATA IN BRIEF, 2018, 21 : 2664 - 2678
  • [9] Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys
    Hemphill, M. A.
    Yuan, T.
    Wang, G. Y.
    Yeh, J. W.
    Tsai, C. W.
    Chuang, A.
    Liaw, P. K.
    [J]. ACTA MATERIALIA, 2012, 60 (16) : 5723 - 5734
  • [10] Machine learning for phase selection in multi-principal element alloys
    Islam, Nusrat
    Huang, Wenjiang
    Zhuang, Houlong L.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2018, 150 : 230 - 235