A multi-task spatio-temporal fully convolutional model incorporating interaction patterns for traffic flow prediction

被引:0
|
作者
Qianqian, Zhou [1 ,2 ]
Tu, Ping [2 ,3 ]
Chen, Nan [2 ,3 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
[2] Minist Educ, Key Lab Spatial Data Min & Informat Sharing, Fuzhou, Peoples R China
[3] Fuzhou Univ, Acad Digital China Fujian, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; multi-task learning; interaction pattern; spatio-temporal dependencies; TERM PREDICTION; NETWORK; FUSION; MULTISTEP; REMOTE;
D O I
10.1080/13658816.2024.2403023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Previous traffic flow prediction studies have utilized spatio-temporal neural networks combined with the multi-task learning framework to seek complementary information for enhancing prediction performance. However, the existing methods still face two challenges: they fail to capture global interaction patterns between regions and lack consideration for inter-correlations within interaction patterns. To solve these issues, we propose a novel multi-task spatio-temporal fully convolutional model named MSTFCM. First, the model includes the interaction tensor and raster tensor as task inputs, where the interaction tensor extends the raster tensor by incorporating global interaction patterns between regions. Second, a multi-task framework combined spatio-temporal convolutional block was used to learn generalized features and interaction features. A channel spatio-temporal attention is added to adaptively adjust feature weights and capture inter-correlations. To train the MSTFCM, the uncertainty loss was designed as the learnable loss functions, which capture various flow fluctuations, to facilitate multi-task optimization. The proposed model was validated on two real-world traffic datasets collected in Xiamen, China. Experimental results showed that MSTFCM outperformed nine baselines in one-step and multi-step prediction, with slower performance degradation as predicted time intervals and steps increased. We further validated the model's effectiveness through designed variants and visualization results.
引用
收藏
页码:142 / 180
页数:39
相关论文
共 50 条
  • [1] Traffic Accident Risk Prediction via Multi-View Multi-Task Spatio-Temporal Networks
    Wang, Senzhang
    Zhang, Jiaqiang
    Li, Jiyue
    Miao, Hao
    Cao, Jiannong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12323 - 12336
  • [2] Deep spatio-temporal dependent convolutional LSTM network for traffic flow prediction
    Tang, Jie
    Zhu, Rong
    Wu, Fengyun
    He, Xuansen
    Huang, Jing
    Zhou, Xianlai
    Sun, Yishuai
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [3] Multi-Task Learning for Spatio-Temporal Event Forecasting
    Zhao, Liang
    Sun, Qian
    Ye, Jieping
    Chen, Feng
    Lu, Chang-Tien
    Ramakrishnan, Naren
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1503 - 1512
  • [4] Spatio-Temporal AutoEncoder for Traffic Flow Prediction
    Liu, Mingzhe
    Zhu, Tongyu
    Ye, Junchen
    Meng, Qingxin
    Sun, Leilei
    Du, Bowen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5516 - 5526
  • [5] DSTF: A Diversified Spatio-Temporal Feature Extraction Model for traffic flow prediction
    Wang, Xing
    Wang, Xiaojun
    Huang, Faliang
    Zou, Fumin
    Liao, Lyuchao
    Zeng, Ruihao
    NEUROCOMPUTING, 2025, 621
  • [6] A heterogeneous traffic spatio-temporal graph convolution model for traffic prediction
    Xu, Jinhua
    Li, Yuran
    Lu, Wenbo
    Wu, Shuai
    Li, Yan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 641
  • [7] Spatio-Temporal Multi-Task Learning via Tensor Decomposition
    Xu, Jianpeng
    Zhou, Jiayu
    Tan, Pang-Ning
    Liu, Xi
    Luo, Lifeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2764 - 2775
  • [8] Spatio-temporal Tensor Multi-Task Learning for Precision fertilization
    Zhang, Yu
    Liu, Tong
    Li, Yang
    Wang, Ruijing
    Huang, He
    Yang, Po
    20TH INT CONF ON UBIQUITOUS COMP AND COMMUNICAT (IUCC) / 20TH INT CONF ON COMP AND INFORMATION TECHNOLOGY (CIT) / 4TH INT CONF ON DATA SCIENCE AND COMPUTATIONAL INTELLIGENCE (DSCI) / 11TH INT CONF ON SMART COMPUTING, NETWORKING, AND SERV (SMARTCNS), 2021, : 398 - 405
  • [9] Distribution Preserving Multi-Task Regression for Spatio-Temporal Data
    Liu, Xi
    Tan, Pang-Ning
    Abraham, Zubin
    Luo, Lifeng
    Hatami, Pouyan
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1134 - 1139
  • [10] Multi-scale Spatio-temporal Attention Network for Traffic Flow Prediction
    Li, Minghao
    Li, Jinhong
    Ta, Xuxiang
    Bai, Yanbo
    Hao, Xinzhe
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 294 - 305