Interpretable machine learning on large samples for supporting runoff estimation in ungauged basins
被引:18
作者:
Xu, Yuanhao
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
Xu, Yuanhao
[1
]
Lin, Kairong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
Lin, Kairong
[1
]
Hu, Caihong
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Water Conservancy Sci & Engn, Zhengzhou 450000, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
Hu, Caihong
[2
]
Wang, Shuli
论文数: 0引用数: 0
h-index: 0
机构:
Changan Univ, Sch Water & Environm, Xian 710061, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
Wang, Shuli
[3
]
Wu, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Water Conservancy Sci & Engn, Zhengzhou 450000, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
Wu, Qiang
[2
]
Zhang, Jingwen
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
Zhang, Jingwen
[1
]
Xiao, Mingzhong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
Xiao, Mingzhong
[1
]
Luo, Yufu
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
Luo, Yufu
[1
]
机构:
[1] Sun Yat Sen Univ, Sch Civil Engn, State Key Lab Tunnel Engn, Guangzhou 510275, Peoples R China
[2] Zhengzhou Univ, Sch Water Conservancy Sci & Engn, Zhengzhou 450000, Peoples R China
[3] Changan Univ, Sch Water & Environm, Xian 710061, Peoples R China
Prediction in ungauged basins;
Interpretable machine learning;
XGBoost;
Shapely additive explanation;
Rainfall-runoff;
HYDROMETEOROLOGICAL TIME-SERIES;
HYDROLOGICAL MODEL PARAMETERS;
LANDSCAPE ATTRIBUTES;
REGIONALIZATION METHODS;
STREAMFLOW ESTIMATION;
CATCHMENT ATTRIBUTES;
GLOBAL OPTIMIZATION;
PREDICTION;
CALIBRATION;
METEOROLOGY;
D O I:
10.1016/j.jhydrol.2024.131598
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
The distribution of flowmeter data and basin characteristic information exhibits substantial disparities, with most flow observations being recorded at a limited number of well-monitored locations. The perennial challenge of achieving reliable and robust hydrological modeling in ungauged catchments through regionalization has persisted. The increasing availability of large-scale hydrological datasets, coupled with recent advancements in machine learning techniques, offers new opportunities to explore patterns of association between basin attributes and hydrological parameters to enhance streamflow predictions. A novel parameter cross-regional transfer approach based on interpretable machine learning (XGBoost) is proposed to accurately predict runoff processes in ungauged regions by leveraging well-trained models across numerous basins within climate zones. We validate the effectiveness of this framework across 5,764 basins in a large sample dataset (Caravan), employing NashSutcliffe Efficiency (NSE), RMSE and bias to assess performance. And a comparison is made with deep transfer learning based on LSTM and Transformer. Results indicate that the proposed method achieves NSE values exceeding 0.2 for 75 % of the ungauged basins, demonstrating superior performance and more stable accuracy compared to pure deep learning models, owing to its incorporation of physical constraints. Furthermore, the response of parameters to basin attributes within different climatic zones in the large-sample context is elucidated through SHAP values, enriching the understanding of hydrological features through data-driven inverse inference. These findings underscore the capability of interpretable machine learning to leverage hydro-physical regularities extracted from abundant basin features, thereby enhancing the accuracy of runoff predictions in ungauged regions.
机构:
King Abdullah Univ Sci & Technol, Thuwal, Saudi ArabiaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Beck, Hylke E.
;
Mcvicar, Tim R.
论文数: 0引用数: 0
h-index: 0
机构:
CSIRO Environm, Canberra, ACT, Australia
Ctr Excellence Climate Extremes, Australian Res Council, Canberra, ACT, AustraliaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Mcvicar, Tim R.
;
Vergopolan, Noemi
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ USA
NOAA Geophys Fluid Dynam Lab, Princeton, NJ USAKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Vergopolan, Noemi
;
Berg, Alexis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montreal, Montreal, PQ, CanadaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Berg, Alexis
;
Lutsko, Nicholas J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif La Jolla, Scripps Inst Oceanog, La Jolla, CA USAKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Lutsko, Nicholas J.
;
Dufour, Ambroise
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Thuwal, Saudi ArabiaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Dufour, Ambroise
;
Zeng, Zhenzhong
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, Peoples R ChinaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Zeng, Zhenzhong
;
Jiang, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, Peoples R ChinaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Jiang, Xin
;
van Dijk, Albert I. J. M.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, AustraliaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
van Dijk, Albert I. J. M.
;
Miralles, Diego G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ghent, Hydroclimate Extremes Lab H CEL, Ghent, BelgiumKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
机构:
King Abdullah Univ Sci & Technol, Thuwal, Saudi ArabiaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Beck, Hylke E.
;
Mcvicar, Tim R.
论文数: 0引用数: 0
h-index: 0
机构:
CSIRO Environm, Canberra, ACT, Australia
Ctr Excellence Climate Extremes, Australian Res Council, Canberra, ACT, AustraliaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Mcvicar, Tim R.
;
Vergopolan, Noemi
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ USA
NOAA Geophys Fluid Dynam Lab, Princeton, NJ USAKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Vergopolan, Noemi
;
Berg, Alexis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montreal, Montreal, PQ, CanadaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Berg, Alexis
;
Lutsko, Nicholas J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif La Jolla, Scripps Inst Oceanog, La Jolla, CA USAKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Lutsko, Nicholas J.
;
Dufour, Ambroise
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Thuwal, Saudi ArabiaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Dufour, Ambroise
;
Zeng, Zhenzhong
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, Peoples R ChinaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Zeng, Zhenzhong
;
Jiang, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, Peoples R ChinaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
Jiang, Xin
;
van Dijk, Albert I. J. M.
论文数: 0引用数: 0
h-index: 0
机构:
Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, AustraliaKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
van Dijk, Albert I. J. M.
;
Miralles, Diego G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ghent, Hydroclimate Extremes Lab H CEL, Ghent, BelgiumKing Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia