Advancements in 2D transition metal dichalcogenides (TMDs) inks for printed optoelectronics: A comprehensive review

被引:8
|
作者
Shahbaz, Iqra [1 ]
Tahir, Muhammad [2 ]
Li, Lihong [1 ,3 ]
Song, Yanlin [1 ]
机构
[1] Inst Chem Chinese Acad Sci ICCAS, CAS Res Educ Ctr Excellence Mol Sci, Key Lab Green Printing, Beijing 100190, Peoples R China
[2] Beijing Inst Technol, Sch Mechatron Engn, Beijing 100081, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
2D materials; TMDs; Ink formulations; Ink properties; Printing techniques; Post-treatment; Printed; Printed optoelectronics; DOPED FIBER LASER; 2-DIMENSIONAL MATERIALS; MOS2; NANOSHEETS; WAVE-GUIDE; BROAD-BAND; INKJET; GRAPHENE; PHOTODETECTORS; ELECTRONICS; PHOTOLUMINESCENCE;
D O I
10.1016/j.mattod.2024.06.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Printed optoelectronics are paramount in emerging research due to their cost-effectiveness, flexibility, and compatibility with diverse substrates, offering innovative solutions for efficient light manipulation and energy conversion. The pursuit of printed optoelectronics is driven by its potential to overcome challenges in traditional optoelectronics, fostering advancements in areas such as wearable devices, the Internet of Things (IoT), and renewable energy technologies. Two-dimensional transition metal dichalcogenides (2D-TMDs) are promising for emerging research in printed optoelectronics because of their unique optical, electrical, and mechanical properties. By harnessing the exceptional properties of 2D-TMDs, such as high surface area, excellent charge carrier mobility, and tunable bandgaps, in printed optoelectronics, researchers unlock cost-effective and flexible avenues for efficient light manipulation, making these materials pivotal for advancing the field and addressing current optoelectronic challenges. The synthesis of 2D-TMD inks and their integration into printed devices offer a promising paradigm shift, enticing explosive interest with the potential for enhanced performance, scalability, and diverse applications in the dynamic landscape of printed optoelectronics. However, the prominent research advances in terms of optoelectronics, light-matter solid interactions, and printable optoelectronic inks based on 2D TMD materials have not been systematically reviewed. This review focuses on synthesizing and optimizing 2D-TMD inks, exploring their varied applications in printed optoelectronic devices, and paving the way for transformative advancements in this field. This review summarizes the latest research developments in this rapidly evolving area and emphasizes the crucial role of 2D-TMD inks in advancing printed optoelectronics, exploring their unique properties and potential for novel device architectures. The comprehensive outlook in this review proposes a roadmap for ongoing and future research endeavors in the ever-evolving field of printed optoelectronics.
引用
收藏
页码:142 / 184
页数:43
相关论文
共 50 条
  • [41] Transport studies in 2D transition metal dichalcogenides and black phosphorus
    Du, Yuchen
    Neal, Adam T.
    Zhou, Hong
    Ye, Peide D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (26)
  • [42] Optical nano-imaging of 2D transition metal dichalcogenides
    Ambardar, Sharad
    Voronine, Dmitri V.
    2018 IEEE RESEARCH AND APPLICATIONS OF PHOTONICS IN DEFENSE CONFERENCE (RAPID), 2018, : 363 - 365
  • [43] Biomedical and bioimaging applications of 2D pnictogens and transition metal dichalcogenides
    Urbanova, Veronika
    Pumera, Martin
    NANOSCALE, 2019, 11 (34) : 15770 - 15782
  • [44] Noninvasive Deterministic Nanostructures Lithography on 2D Transition Metal Dichalcogenides
    Ramo, Lorenzo
    Peci, Ermes
    Magnozzi, Michele
    Spotorno, Emma
    Venturino, Valentina
    Sygletou, Maria
    Giordano, Maria Caterina
    Zambito, Giorgio
    Telesio, Francesca
    Milosz, Zygmunt
    Canepa, Maurizio
    Bisio, Francesco
    ADVANCED ENGINEERING MATERIALS, 2025, 27 (01)
  • [45] Recent advances in plasma modification of 2D transition metal dichalcogenides
    Nan, Haiyan
    Zhou, Renwu
    Gu, Xiaofeng
    Xiao, Shaoqing
    Ostrikov, Kostya
    NANOSCALE, 2019, 11 (41) : 19202 - 19213
  • [46] Threshold magnetoresistance in anistropic magnetic 2D transition metal dichalcogenides
    Xu, Hongjun
    Hsu, Ming-Chien
    Fuh, Huei-Ru
    Feng, Jiafeng
    Han, Xiufeng
    Zhao, Yanfeng
    Zhang, Duan
    Wang, Xinming
    Liu, Fang
    Liu, Huajun
    Cho, Jiung
    Choi, Miri
    Chun, Byong Sun
    Coileain, Cormac O.
    Wang, Zhi
    Jalil, Mansoor B. A.
    Wu, Han-Chun
    Chang, Ching-Ray
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (12) : 3058 - 3064
  • [47] Recent progress of flexible electronics by 2D transition metal dichalcogenides
    Lu Zheng
    Xuewen Wang
    Hanjun Jiang
    Manzhang Xu
    Wei Huang
    Zheng Liu
    Nano Research, 2022, 15 : 2413 - 2432
  • [48] Transient Nanoscopy of Exciton Dynamics in 2D Transition Metal Dichalcogenides
    Li, Jingang
    Yang, Rundi
    Higashitarumizu, Naoki
    Dai, Siyuan
    Wu, Junqiao
    Javey, Ali
    Grigoropoulos, Costas P.
    ADVANCED MATERIALS, 2024, 36 (21)
  • [49] Electrostatic Potential Anomaly in 2D Janus Transition Metal Dichalcogenides
    Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha
    410082, China
    不详
    410082, China
    Ann Phys Leipzig, 1600, 12
  • [50] Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides
    Wang, Junyong
    Verzhbitskiy, Ivan
    Eda, Goki
    ADVANCED MATERIALS, 2018, 30 (47)