Maximum principle for the mass fraction in a system with two mass balance equations

被引:0
作者
Lazare, Gauthier [1 ,2 ]
Feng, Qingqing [1 ]
Helluy, Philippe [2 ]
Herard, Jean-Marc [1 ,3 ]
Hulsemann, Frank [1 ]
Pujet, Stephane [1 ]
机构
[1] EDF R&D Chatou, 6 Quai Watier, F-78400 Chatou, France
[2] IRMA, UMR 7501, 7 Rue Descartes, F-67000 Strasbourg, France
[3] Aix Marseille Univ, I2M Inst Math Marseille, Marseille, France
来源
COMPTES RENDUS MECANIQUE | 2024年 / 352卷
关键词
maximum principle; Finite Volume scheme; two-phase flow; non-equilibrium velocity; SCHEME;
D O I
10.5802/crmeca.244
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Three Finite Volume schemes are proposed in this note to satisfy the maximum principle for the mass fraction y , solution of an unsteady balance equation, including a relative velocity between phases and a source term. The continuous maximum principle is examined first. Then, linear implicit discrete schemes are detailed in a multi-dimensional and unstructured framework.
引用
收藏
页数:19
相关论文
共 50 条
[41]   THE MAXIMUM PRINCIPLE FOR TIME-FRACTIONAL DIFFUSION EQUATIONS AND ITS APPLICATION [J].
Brunner, Hermann ;
Han, Houde ;
Yin, Dongsheng .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (10) :1307-1321
[43]   Applications of the maximum principle to a variety of problems involving elliptic and parabolic equations [J].
Philippin, GA ;
Vernier-Piro, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (01) :661-679
[44]   A Conservative Finite Volume Scheme Preserving Maximum Principle for Diffusion Equations [J].
Yu, Yunlong ;
Yuan, Guangwei .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
[45]   The maximum principle for partially observed optimal control of stochastic differential equations [J].
Tang, SJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (05) :1596-1617
[46]   MAXIMUM PRINCIPLE AND ITS APPLICATION FOR THE TIME-FRACTIONAL DIFFUSION EQUATIONS [J].
Luchko, Yury .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (01) :110-124
[47]   Maximum principle and its application for the time-fractional diffusion equations [J].
Yury Luchko .
Fractional Calculus and Applied Analysis, 2011, 14 :110-124
[48]   MAXIMUM PRINCIPLE FOR CERTAIN GENERALIZED TIME AND SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Alsaedi, Ahmed ;
Ahmad, Bashir ;
Kirane, Mokhtar .
QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (01) :163-175
[49]   MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF STOCHASTIC EVOLUTION EQUATIONS WITH RECURSIVE UTILITIES [J].
Liu, Guomin ;
Tang, Shanjian .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (06) :3467-3500
[50]   A nonlinear finite volume element method preserving the discrete maximum principle for heterogeneous anisotropic diffusion equations [J].
Wu, Dan ;
Lv, Junliang ;
Sheng, Zhiqiang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451