Maximum principle for the mass fraction in a system with two mass balance equations

被引:0
作者
Lazare, Gauthier [1 ,2 ]
Feng, Qingqing [1 ]
Helluy, Philippe [2 ]
Herard, Jean-Marc [1 ,3 ]
Hulsemann, Frank [1 ]
Pujet, Stephane [1 ]
机构
[1] EDF R&D Chatou, 6 Quai Watier, F-78400 Chatou, France
[2] IRMA, UMR 7501, 7 Rue Descartes, F-67000 Strasbourg, France
[3] Aix Marseille Univ, I2M Inst Math Marseille, Marseille, France
来源
COMPTES RENDUS MECANIQUE | 2024年 / 352卷
关键词
maximum principle; Finite Volume scheme; two-phase flow; non-equilibrium velocity; SCHEME;
D O I
10.5802/crmeca.244
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Three Finite Volume schemes are proposed in this note to satisfy the maximum principle for the mass fraction y , solution of an unsteady balance equation, including a relative velocity between phases and a source term. The continuous maximum principle is examined first. Then, linear implicit discrete schemes are detailed in a multi-dimensional and unstructured framework.
引用
收藏
页数:19
相关论文
共 50 条
[31]   Maximum principle for controlled fractional Fokker-Planck equations [J].
Qiuxi Wang .
Advances in Difference Equations, 2015
[32]   Maximum principle for the time-space fractional diffusion equations [J].
Wang, Jingyu ;
Yan, Zaizai ;
Zhao, Yang ;
Lv, Zhihan .
Journal of Computational and Theoretical Nanoscience, 2015, 12 (12) :5636-5640
[33]   CONTROLLED SINGULAR VOLTERRA INTEGRAL EQUATIONS AND PONTRYAGIN MAXIMUM PRINCIPLE [J].
Lin, Ping ;
Yong, Jiongmin .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (01) :136-164
[34]   The Stampacchia maximum principle for stochastic partial differential equations and applications [J].
Chekroun, Mickael D. ;
Park, Eunhee ;
Temam, Roger .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) :2926-2972
[35]   A new maximum principle of elliptic differential equations in divergence form [J].
Li, Dongsheng ;
Wang, Lihe .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) :2823-2828
[36]   Maximum Principle for Nonlinear Fractional Differential Equations with the Hilfer Derivative [J].
Elbukhari, Abu Bakr ;
Fan, Zhenbin ;
Li, Gang .
FRACTAL AND FRACTIONAL, 2023, 7 (07)
[37]   On the strong maximum principle for fully nonlinear degenerate elliptic equations [J].
Martino Bardi ;
Francesca Da Lio .
Archiv der Mathematik, 1999, 73 :276-285
[38]   THE MAXIMUM PRINCIPLE FOR VISCOSITY SOLUTIONS OF ELLIPTIC DIFFERENTIAL FUNCTIONAL EQUATIONS [J].
Karpowicz, Adrian .
OPUSCULA MATHEMATICA, 2013, 33 (01) :99-105
[39]   A FINITE VOLUME SCHEME PRESERVING MAXIMUM PRINCIPLE FOR THE SYSTEM OF RADIATION DIFFUSION EQUATIONS WITH THREE-TEMPERATURE [J].
Yu, Yunlong ;
Chen, Xingding ;
Yuan, Guangwei .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01) :B93-B113
[40]   The finite volume scheme preserving maximum principle for two-dimensional time-fractional Fokker-Planck equations on distorted meshes [J].
Yang, Xuehua ;
Zhang, Haixiang ;
Zhang, Qi ;
Yuan, Guangwei ;
Sheng, Zhiqiang .
APPLIED MATHEMATICS LETTERS, 2019, 97 :99-106