Maximum principle for the mass fraction in a system with two mass balance equations

被引:0
作者
Lazare, Gauthier [1 ,2 ]
Feng, Qingqing [1 ]
Helluy, Philippe [2 ]
Herard, Jean-Marc [1 ,3 ]
Hulsemann, Frank [1 ]
Pujet, Stephane [1 ]
机构
[1] EDF R&D Chatou, 6 Quai Watier, F-78400 Chatou, France
[2] IRMA, UMR 7501, 7 Rue Descartes, F-67000 Strasbourg, France
[3] Aix Marseille Univ, I2M Inst Math Marseille, Marseille, France
来源
COMPTES RENDUS MECANIQUE | 2024年 / 352卷
关键词
maximum principle; Finite Volume scheme; two-phase flow; non-equilibrium velocity; SCHEME;
D O I
10.5802/crmeca.244
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Three Finite Volume schemes are proposed in this note to satisfy the maximum principle for the mass fraction y , solution of an unsteady balance equation, including a relative velocity between phases and a source term. The continuous maximum principle is examined first. Then, linear implicit discrete schemes are detailed in a multi-dimensional and unstructured framework.
引用
收藏
页数:19
相关论文
共 50 条
[21]   The maximum principle and growth estimates for partial difference equations [J].
Gregor J. .
aequationes mathematicae, 2006, 71 (1-2) :86-99
[22]   Existence of Solution of a Finite Volume Scheme Preserving Maximum Principle for Diffusion Equations [J].
Yuan, Guangwei ;
Yu, Yunlong .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (01) :80-96
[23]   On the Maximum Principle for Solutions of Second Order Elliptic Equations [J].
A. B. Zaitsev .
Russian Mathematics, 2020, 64 :8-13
[24]   A Strong Maximum Principle for Nonlinear Nonlocal Diffusion Equations [J].
Hartland, Tucker ;
Shankar, Ravi .
AXIOMS, 2023, 12 (11)
[25]   Maximum Principle and Application of Parabolic Partial Differential Equations [J].
Dong Fangliang .
2012 INTERNATIONAL CONFERENCE ON MECHANICAL AND ELECTRONICS ENGINEERING, 2012, 3 :198-205
[26]   On feedback strengthening of the maximum principle for measure differential equations [J].
Maxim Staritsyn ;
Stepan Sorokin .
Journal of Global Optimization, 2020, 76 :587-612
[27]   Unconditionally maximum principle-preserving linear method for a mass-conserved Allen-Cahn model with local Lagrange multiplier [J].
Yang, Junxiang ;
Kim, Junseok .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 139
[28]   Maximum principle for volterra integral equations with controlled delay time [J].
Yatsenko, Y .
OPTIMIZATION, 2004, 53 (02) :177-187
[29]   A maximum principle preserving meshfree method for anisotropic diffusion equations ☆ [J].
Tian, Hao ;
Wang, Xiaofang ;
Sheng, Zhiqiang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 518
[30]   Maximum principle for controlled fractional Fokker-Planck equations [J].
Wang, Qiuxi .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,