Circuit Partitioning for Multi-Core Quantum Architectures with Deep Reinforcement Learning

被引:0
作者
Pastor, Arnau [1 ]
Escofet, Pau [1 ]
Ben Rached, Sahar [1 ]
Alarcon, Eduard [1 ]
Barlet-Ros, Pere [1 ]
Abadal, Sergi [1 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024 | 2024年
基金
欧洲研究理事会;
关键词
Quantum Computing; Quantum Circuit Mapping; Multi-Core Quantum Computers; Deep Reinforcement Learning;
D O I
10.1109/ISCAS58744.2024.10557956
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quantum computing holds immense potential for solving classically intractable problems by leveraging the unique properties of quantum mechanics. The scalability of quantum architectures remains a significant challenge. Multi-core quantum architectures are proposed to solve the scalability problem, arising a new set of challenges in hardware, communications and compilation, among others. One of these challenges is to adapt a quantum algorithm to fit within the different cores of the quantum computer. This paper presents a novel approach for circuit partitioning using Deep Reinforcement Learning, contributing to the advancement of both quantum computing and graph partitioning. This work is the first step in integrating Deep Reinforcement Learning techniques into Quantum Circuit Mapping, opening the door to a new paradigm of solutions to such problems.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Interconnect Fabrics for Multi-Core Quantum Processors: A Context Analysis [J].
Escofet, Pau ;
Ben Rached, Sahar ;
Rodrigo, Santiago ;
Almudever, Carmen G. ;
Alarcon, Eduard ;
Abadal, Sergi .
PROCEEDINGS OF THE 2023 16TH INTERNATIONAL WORKSHOP ON NETWORK ON CHIP ARCHITECTURES, NOCARC 2023, 2023, :34-39
[22]   Deep Reinforcement Learning for Analog Circuit Structure Synthesis [J].
Zhao, Zhenxin ;
Zhang, Lihong .
PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, :1157-1160
[23]   Cohesive Quantum Circuit Layer Construction with Reinforcement Learning [J].
Zorn, Maximilian ;
Stein, Jonas ;
Altmann, Philipp ;
Koelle, Michael ;
Linnhoff-Popien, Claudia ;
Gabor, Thomas .
2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 1, 2024, :1721-1730
[24]   Superconducting quantum computing optimization based on multi-objective deep reinforcement learning [J].
Liu, Yangting .
SCIENTIFIC REPORTS, 2025, 15 (01)
[25]   Quantum reinforcement learning Comparing quantum annealing and gate-based quantum computing with classical deep reinforcement learning [J].
Neumann, Niels M. P. ;
de Heer, Paolo B. U. L. ;
Phillipson, Frank .
QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
[26]   An efficient and scalable variational quantum circuits approach for deep reinforcement learning [J].
Niyazi Furkan Bar ;
Hasan Yetis ;
Mehmet Karakose .
Quantum Information Processing, 22
[27]   An efficient and scalable variational quantum circuits approach for deep reinforcement learning [J].
Bar, Niyazi Furkan ;
Yetis, Hasan ;
Karakose, Mehmet .
QUANTUM INFORMATION PROCESSING, 2023, 22 (08)
[28]   On the optimality of quantum circuit initial mapping using reinforcement learning [J].
Amer, Norhan Elsayed ;
Gomaa, Walid ;
Kimura, Keiji ;
Ueda, Kazunori ;
El-Mahdy, Ahmed .
EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
[29]   On the optimality of quantum circuit initial mapping using reinforcement learning [J].
Norhan Elsayed Amer ;
Walid Gomaa ;
Keiji Kimura ;
Kazunori Ueda ;
Ahmed El-Mahdy .
EPJ Quantum Technology, 2024, 11
[30]   Multi-source Transfer Learning for Deep Reinforcement Learning [J].
Garcia-Ramirez, Jesus ;
Morales, Eduardo ;
Escalante, Hugo Jair .
PATTERN RECOGNITION (MCPR 2021), 2021, 12725 :131-140