Solid oxide fuel cells (SOFC) could facilitate the green energy transition as they can produce high-temperature heat and electricity while emitting only water when supplied with hydrogen. Additionally, when operated with natural gas, these systems demonstrate higher thermoelectric efficiency compared to traditional microturbines or alternative engines. Within this context, although digitalisation has facilitated the acquisition of extensive data for precise modelling and optimal management of fuel cells, there remains a significant gap in developing digital twins that effectively achieve these objectives in real-world applications. Existing research predominantly focuses on the use of machine learning algorithms to predict the degradation of fuel cell components and to optimally design and theoretically operate these systems. In light of this, the presented study focuses on developing digital twin-oriented models that predict the efficiency of a commercial gas-fed solid oxide fuel cell under various operational conditions. This study uses data gathered from an experimental setup, which was employed to train various machine learning models, including artificial neural networks, random forests, and gradient boosting regressors. Preliminary findings demonstrate that the random forest model excels, achieving an R2 score exceeding 0.98 and a mean squared error of 0.14 in estimating electric efficiency. These outcomes could validate the potential of machine learning algorithms to support fuel cell integration into energy management systems capable of improving efficiency, pushing the transition towards sustainable energy solutions.
机构:
China Steel Corp, Green Energy & Syst Integrat Res & Dev Dept, Kaohsiung 81233, TaiwanNatl Yunlin Univ Sci & Technol, Dept Chem & Mat Engn, Yunlin 64002, Taiwan
机构:
State Grid Elect Power Res Inst, Nanjing 211106, Peoples R China
Tsinghua Univ, Dept Energy & Power Engn, Beijing 100084, Peoples R ChinaState Grid Elect Power Res Inst, Nanjing 211106, Peoples R China
Zhang, Xiaochen
He, Zhenyu
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Elect Power Res Inst, Nanjing 211106, Peoples R China
Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R ChinaState Grid Elect Power Res Inst, Nanjing 211106, Peoples R China
He, Zhenyu
Zhan, Zhongliang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R ChinaState Grid Elect Power Res Inst, Nanjing 211106, Peoples R China
Zhan, Zhongliang
Han, Te
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Energy & Power Engn, Beijing 100084, Peoples R ChinaState Grid Elect Power Res Inst, Nanjing 211106, Peoples R China
机构:
Korea Electrotechnol Res Inst, Energy Platform Res Ctr, Gwangju 61751, South Korea
Pusan Natl Univ, Sch Elect Engn, Pusan 46241, South KoreaKorea Electrotechnol Res Inst, Energy Platform Res Ctr, Gwangju 61751, South Korea
Park, Hyang-A
Byeon, Gilsung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Electrotechnol Res Inst, Energy Platform Res Ctr, Gwangju 61751, South KoreaKorea Electrotechnol Res Inst, Energy Platform Res Ctr, Gwangju 61751, South Korea
Byeon, Gilsung
Son, Wanbin
论文数: 0引用数: 0
h-index: 0
机构:
Korea Electrotechnol Res Inst, Energy Platform Res Ctr, Gwangju 61751, South KoreaKorea Electrotechnol Res Inst, Energy Platform Res Ctr, Gwangju 61751, South Korea
Son, Wanbin
Kim, Jongyul
论文数: 0引用数: 0
h-index: 0
机构:
Korea Electrotechnol Res Inst, Energy Platform Res Ctr, Gwangju 61751, South KoreaKorea Electrotechnol Res Inst, Energy Platform Res Ctr, Gwangju 61751, South Korea
Kim, Jongyul
Kim, Sungshin
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Sch Elect Engn, Pusan 46241, South KoreaKorea Electrotechnol Res Inst, Energy Platform Res Ctr, Gwangju 61751, South Korea
机构:
Univ Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USAUniv Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA
Xu, Yaqing
Qamsane, Yassine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USAUniv Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA
Qamsane, Yassine
Puchala, Saumuy
论文数: 0引用数: 0
h-index: 0
机构:
Ford Motor Co, Mfg Technol Dev, Dearborn, MI 48126 USAUniv Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA
Puchala, Saumuy
Januszczak, Annette
论文数: 0引用数: 0
h-index: 0
机构:
Ford Motor Co, Mfg Technol Dev, Dearborn, MI 48126 USAUniv Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA
Januszczak, Annette
Tilbury, Dawn M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Robot, 2505 Hayward St, Ann Arbor, MI 48109 USAUniv Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA
Tilbury, Dawn M.
Barton, Kira
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Robot, 2505 Hayward St, Ann Arbor, MI 48109 USAUniv Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA