Multiparameter Estimation for Monostatic FDA-MIMO Radar With Polarimetric Antenna

被引:4
|
作者
Zhong, Tiantian [1 ]
Tao, Haihong [1 ]
Cao, Han [1 ]
Liao, Haiyun [1 ]
机构
[1] Xidian Univ, Natl Key Lab Radar Signal Proc, Xian 710071, Peoples R China
关键词
Compensating vector; electromagnetic vector sensor (EVS); polarimetric sensitive frequency diverse array multiple-input-multiple-output (PS-FDA-MIMO) radar; range ambiguity; target localization; POLARIZATION ESTIMATION; TARGET LOCALIZATION; PARAMETER-ESTIMATION; ANGLE ESTIMATION; RANGE; DOA; ALGORITHM; FIELD;
D O I
10.1109/TAP.2024.3353345
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The monostatic polarimetric sensitive frequency diverse array multiple-input-multiple-output (PS-FDA-MIMO) radar is able to provide polarization information regarding targets in comparison to the FDA-MIMO radar. A monostatic PS-FDA-MIMO radar can differentiate targets with the same range bin and spatial-polarization angle, but different ambiguous range regions, compared to PS-MIMO radar. The high pulse repetition frequency (PRF) will lead to range ambiguity in practical applications. The monostatic FDA-MIMO radar with electromagnetic vector sensor (EVS) is equipped with a resolving range ambiguous method for joint parameter estimation of range and spatial-polarization angle in this article. In the receiver, spatial-polarization angles are estimated with the ESPRIT-based algorithm. In the transmitter, range dependence compensation can resolve the coupling problem between spatial angles with the range due to the frequency increment. By using the maximum likelihood estimator (MLE) method, the monostatic EVS-FDA-MIMO radar can jointly calculate the spatial-polarization angle and range parameters of targets based on degrees-of-freedom (DOF) in the spatial angle and range domains. Cramer-Rao bounds (CRBs) are also derived for the spatial-polarization angles and range, and the property of the proposed approach is evaluated. A variety of simulated scenarios demonstrate the effectiveness of the estimated estimation strategies.
引用
收藏
页码:2524 / 2539
页数:16
相关论文
共 50 条
  • [21] DOA and Range Estimation for FDA-MIMO Radar with Sparse Bayesian Learning
    Liu, Qi
    Wang, Xianpeng
    Huang, Mengxing
    Lan, Xiang
    Sun, Lu
    REMOTE SENSING, 2021, 13 (13)
  • [22] Polynomial rooting-based parameter estimation for polarimetric monostatic MIMO radar
    Yue, Yaxing
    Wang, Yong
    Xing, Fangyuan
    Shi, Zhiguo
    Liao, Guisheng
    SIGNAL PROCESSING, 2023, 212
  • [23] An Improved ESPRIT-Based Algorithm for Monostatic FDA-MIMO Radar With Linear or Nonlinear Frequency Increments
    Feng, Maoyuan
    Yang, Yunxiu
    Shu, Qin
    Yang, Rong
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) : 2375 - 2379
  • [24] Performance Prediction of FDA-MIMO Radar Detector
    Xu, Ziting
    Huang, Bang
    Wang, Wenqin
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [25] Persymmetric Adaptive Detector for FDA-MIMO Radar
    Cheng, Jie
    Chen, Hui
    Gui, Ronghua
    Jia, Wenkai
    Wang, Wen-Qin
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [26] Design of adaptive detectors for FDA-MIMO radar
    Lan, Lan
    Marino, Angela
    Aubry, Augusto
    De Maio, Antonio
    Liao, Guisheng
    Xu, Jingwei
    2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,
  • [27] Covariance matrix estimation method of FDA-MIMO radar with low snapshot size
    Ding, Zihang
    Xie, Junwei
    DIGITAL SIGNAL PROCESSING, 2024, 145
  • [28] A Tensor Generalized Weighted Linear Predictor for FDA-MIMO Radar Parameter Estimation
    Wen, Chao
    Xie, Yu
    Qiao, Zhiwei
    Xu, Liyun
    Qian, Yuhua
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (06) : 6059 - 6072
  • [29] Joint Range and Angle Estimation by FDA-MIMO Radar With Unknown Mutual Coupling
    Liu, Long
    Zhang, Hu
    Lan, Lan
    Deng, Jing-Ya
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (04) : 3669 - 3683
  • [30] Parameter Estimation Algorithm for Bistatic FDA-MIMO Radar Based on Tensor Framework
    Guo, Yue-Hao
    Wang, Xian-Peng
    Lan, Xiang
    Su, Ting
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (06): : 2103 - 2111