Multiparameter Estimation for Monostatic FDA-MIMO Radar With Polarimetric Antenna

被引:4
|
作者
Zhong, Tiantian [1 ]
Tao, Haihong [1 ]
Cao, Han [1 ]
Liao, Haiyun [1 ]
机构
[1] Xidian Univ, Natl Key Lab Radar Signal Proc, Xian 710071, Peoples R China
关键词
Compensating vector; electromagnetic vector sensor (EVS); polarimetric sensitive frequency diverse array multiple-input-multiple-output (PS-FDA-MIMO) radar; range ambiguity; target localization; POLARIZATION ESTIMATION; TARGET LOCALIZATION; PARAMETER-ESTIMATION; ANGLE ESTIMATION; RANGE; DOA; ALGORITHM; FIELD;
D O I
10.1109/TAP.2024.3353345
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The monostatic polarimetric sensitive frequency diverse array multiple-input-multiple-output (PS-FDA-MIMO) radar is able to provide polarization information regarding targets in comparison to the FDA-MIMO radar. A monostatic PS-FDA-MIMO radar can differentiate targets with the same range bin and spatial-polarization angle, but different ambiguous range regions, compared to PS-MIMO radar. The high pulse repetition frequency (PRF) will lead to range ambiguity in practical applications. The monostatic FDA-MIMO radar with electromagnetic vector sensor (EVS) is equipped with a resolving range ambiguous method for joint parameter estimation of range and spatial-polarization angle in this article. In the receiver, spatial-polarization angles are estimated with the ESPRIT-based algorithm. In the transmitter, range dependence compensation can resolve the coupling problem between spatial angles with the range due to the frequency increment. By using the maximum likelihood estimator (MLE) method, the monostatic EVS-FDA-MIMO radar can jointly calculate the spatial-polarization angle and range parameters of targets based on degrees-of-freedom (DOF) in the spatial angle and range domains. Cramer-Rao bounds (CRBs) are also derived for the spatial-polarization angles and range, and the property of the proposed approach is evaluated. A variety of simulated scenarios demonstrate the effectiveness of the estimated estimation strategies.
引用
收藏
页码:2524 / 2539
页数:16
相关论文
共 50 条
  • [1] Polarimetric FDA-MIMO Radar Detection
    Rosamilia, Massimo
    Lan, Lan
    Aubry, Augusto
    De Maio, Antonio
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [2] A Fast PARAFAC Algorithm for Parameter Estimation in Monostatic FDA-MIMO Radar
    Wang, Wenshuai
    Lan, Xiang
    Shi, Jinmei
    Wang, Xianpeng
    REMOTE SENSING, 2022, 14 (13)
  • [3] A Single-Snapshot Localization for Monostatic FDA-MIMO Radar
    Jang, Suhwan
    Im, Chaehun
    Lee, Hyunwook
    Lee, Chungyong
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (12) : 2899 - 2903
  • [4] Tensor-Based Angle and Range Estimation Method in Monostatic FDA-MIMO Radar
    Xu, Tengxian
    Yang, Yongqin
    Huang, Mengxing
    Wang, Han
    Wu, Di
    Yi, Qu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [5] A Novel Unitary ESPRIT Algorithm for Monostatic FDA-MIMO Radar
    Liu, Feilong
    Wang, Xianpeng
    Huang, Mengxing
    Wan, Liangtian
    Wang, Huafei
    Zhang, Bin
    SENSORS, 2020, 20 (03)
  • [6] Adaptive Target Detection With Polarimetric FDA-MIMO Radar
    Lan, Lan
    Rosamilia, Massimo
    Aubry, Augusto
    De Maio, Antonio
    Liao, Guisheng
    Xu, Jingwei
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (03) : 2204 - 2220
  • [7] Joint Angle and Range Estimation in Monostatic FDA-MIMO Radar via Compressed Unitary PARAFAC
    Wang, Wenshuai
    Wang, Xianpeng
    Shi, Jinmei
    Lan, Xiang
    REMOTE SENSING, 2022, 14 (06)
  • [8] A Reduced-Dimension MUSIC Algorithm for Monostatic FDA-MIMO Radar
    Feng, Maoyuan
    Cui, Zhongma
    Yang, Yunxiu
    Shu, Qin
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (04) : 1279 - 1282
  • [9] DOA estimation and tracking for FDA-MIMO radar signal
    Sun, Yan
    Zheng, Zhi
    Wang, Wen-Qin
    Liao, Tian-xing
    DIGITAL SIGNAL PROCESSING, 2020, 106
  • [10] Tensor-Based Reduced-Dimension MUSIC Method for Parameter Estimation in Monostatic FDA-MIMO Radar
    Xu, Tengxian
    Wang, Xianpeng
    Huang, Mengxing
    Lan, Xiang
    Sun, Lu
    REMOTE SENSING, 2021, 13 (18)