Hierarchical modification of bimodal grain structure in Al/Ti laminated composites for extraordinary strength-ductility synergy

被引:3
|
作者
Que, Biaohua [1 ]
Chen, Liang [1 ,2 ]
Zhao, Yuhui [1 ]
Qian, Lihua [1 ]
Lin, Jun [1 ,2 ]
Zhang, Cunsheng [1 ,2 ]
Zhao, Guoqun [1 ,2 ]
机构
[1] Shandong Univ, State Key Lab Adv Equipment & Technol Met Forming, Jinan 250061, Shandong, Peoples R China
[2] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
A; Laminates; B. Mechanical properties; B; Microstructures; E; Sintering; MECHANICAL-PROPERTIES; METAL; ALUMINUM; SIZE; ALLOY; PHASE; MICROSTRUCTURE; SEGREGATION; EVOLUTION; BEHAVIOR;
D O I
10.1016/j.compositesa.2024.108438
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Al/Ti laminates with altering Al grain sizes was fabricated via hot press sintering. Fine Al powders results in low sintering density and obvious cracks at Al/Ti interface. Large Al powders greatly increased the grain size, grain aspect ratio, LAGBs fraction, and recrystallization fraction of the Al layers. The texture heterogeneity is also significant, with rolling texture in Ti layer and random texture in Al layer. Ti5Si3 phase precipitated at Al/Ti interface, and it gradually partitioned Ti atoms from TiAl3 and hindered the formation of TiAl3. Moreover, numerous stacking faults, dislocation loops, dislocation pinning, and dislocation tangles were observed at Al/Ti interface, resulting in an increased back stress. Large Al grains contributes the highest bending strength of 734.8 MPa, tensile strength of 753.2 MPa, and fracture strain of 71 %. The effect of grain size on work hardening was attributed to the fraction of LAGBs, dislocation storage capacity and additional HDI strengthening.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A Co-rich chemically complex intermetallic alloy with extraordinary strength-ductility synergy
    Zhao, Y. L.
    Xiao, W. C.
    Zhao, Z. K.
    Li, Q.
    Cui, J.
    Luan, J. H.
    Liu, C. T.
    Liaw, P. K.
    Yang, T.
    SCRIPTA MATERIALIA, 2023, 229
  • [32] Excellent strength-ductility synergy of NiAl-based composites achieved by a 3-dimensional network structure
    Lu, Zhen
    Liu, Dekai
    Shi, Chengcheng
    Xiao, Han
    Liu, Wei
    Jiang, Shaosong
    COMPOSITES PART B-ENGINEERING, 2022, 229
  • [33] Hierarchical structure in Al-Cu alloys to promote strength/ductility synergy
    Wu, S. H.
    Xue, H.
    Yang, C.
    Kuang, J.
    Zhang, P.
    Zhang, J. Y.
    Li, Y. J.
    Roven, Hans J.
    Liu, G.
    Sun, J.
    SCRIPTA MATERIALIA, 2021, 202
  • [34] Tailoring interfacial structure and achieving excellent strength-ductility synergy of Al/Mg/Al composite via porthole die co-extrusion and post-annealing
    Tang, Jianwei
    Chen, Liang
    Zhao, Yuhui
    Qian, Lihua
    Zhang, Cunsheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 897
  • [35] Enhancing strength-ductility synergy of AlNp/Al composite by regulating heterostructure of matrix grain and particle distribution
    Chen, Yu-yao
    Nie, Jin-feng
    Fan, Yong
    Gu, Lei
    Xie, Ke-wei
    Liu, Xiang-fa
    Zhao, Yong-hao
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2024, 34 (04) : 1049 - 1064
  • [36] Achieving gradient heterogeneous structure in Mg alloy for excellent strength-ductility synergy
    Han, Jing
    Sun, Jiapeng
    Song, Yuanming
    Xu, Bingqian
    Yang, Zhenquan
    Xu, Songsong
    Han, Ying
    Wu, Guosong
    Zhao, Jiyun
    JOURNAL OF MAGNESIUM AND ALLOYS, 2023, 11 (07) : 2392 - 2403
  • [37] Achieving strength-ductility synergy in LPBF Ti-6Al-8 V alloy through in situ alloying
    Song, Zhe
    Liu, Yinghang
    Zhu, Gaoming
    Wang, Jie
    Wang, Leyun
    Zeng, Xiaoqin
    MATERIALS LETTERS, 2024, 375
  • [38] Development of bimodal grain-structured Al-Zn-Mg-Cu-Zr alloys for strength-ductility synergy via microalloying with Hf and Sc
    Wu, Mingdong
    Xiao, Daihong
    Yuan, Shuo
    Tang, Sai
    Li, Zeyu
    Yin, Xiao
    Huang, Lanping
    Liu, Wensheng
    MATERIALS CHARACTERIZATION, 2023, 205
  • [39] Towards strength-ductility synergy in nanosheets strengthened titanium matrix composites through laser power bed fusion of MXene/Ti composite powder
    Wang, L.
    Li, J.
    Liu, Z. Q.
    Li, S. F.
    Yang, Y. F.
    Misra, R. D. K.
    Tian, Z. J.
    MATERIALS TECHNOLOGY, 2023, 38 (01)
  • [40] Enhanced strength-ductility synergy in additively manufactured micro-laminated duplex stainless steel matrix composites with multiple heterogeneous structures
    Fang, Yongjian
    Kim, Min-Kyeom
    Zhang, Yali
    Duan, Ziyang
    Yuan, Quan
    Suhr, Jonghwan
    ADDITIVE MANUFACTURING, 2025, 98