Adaptive Heterogeneous Client Sampling for Federated Learning Over Wireless Networks

被引:0
作者
Luo, Bing [1 ,2 ]
Xiao, Wenli [3 ]
Wang, Shiqiang [4 ]
Huang, Jianwei [5 ]
Tassiulas, Leandros [6 ,7 ]
机构
[1] Duke Kunshan Univ, Data Sci Res Ctr, Kunshan 215316, Peoples R China
[2] Peng Cheng Lab PCL, Shenzhen 518066, Peoples R China
[3] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
[4] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[5] Chinese Univ Hong Kong, Shenzhen Inst Artificial Intelligence & Robot Soc, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[6] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
[7] Yale Univ, Inst Network Sci, New Haven, CT 06520 USA
基金
中国国家自然科学基金;
关键词
Convergence; Bandwidth; Training; Wireless networks; Prototypes; Optimization; Probability; Client sampling; convergence analysis; federated learning; optimization algorithm; statistical heterogeneity; system heterogeneity; wireless networks; OPTIMIZATION;
D O I
10.1109/TMC.2024.3368473
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) algorithms usually sample a fraction of clients in each round (partial participation) when the number of participants is large and the server's communication bandwidth is limited. Recent works on the convergence analysis of FL have focused on unbiased client sampling, e.g., sampling uniformly at random, which suffers from slow wall-clock time for convergence due to high degrees of system heterogeneity (e.g., diverse computation and communication capacities) and statistical heterogeneity (e.g., unbalanced and non-i.i.d. data). This article aims to design an adaptive client sampling algorithm for FL over wireless networks that tackles both system and statistical heterogeneity to minimize the wall-clock convergence time. We obtain a new tractable convergence bound for FL algorithms with arbitrary client sampling probability. Based on the bound, we analytically establish the relationship between the total learning time and sampling probability with an adaptive bandwidth allocation scheme, which results in a non-convex optimization problem. We design an efficient algorithm for learning the unknown parameters in the convergence bound and develop a low-complexity algorithm to approximately solve the non-convex problem. Our solution reveals the impact of system and statistical heterogeneity parameters on the optimal client sampling design. Moreover, our solution shows that as the number of sampled clients increases, the total convergence time first decreases and then increases because a larger sampling number reduces the number of rounds for convergence but results in a longer expected time per-round due to limited wireless bandwidth. Experimental results from both hardware prototype and simulation demonstrate that our proposed sampling scheme significantly reduces the convergence time compared to several baseline sampling schemes. Notably, for EMNIST dataset, our scheme in hardware prototype spends 71% less time than the baseline uniform sampling for reaching the same target loss.
引用
收藏
页码:9663 / 9677
页数:15
相关论文
共 50 条
  • [11] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [12] Scheduling Policies for Federated Learning in Wireless Networks
    Yang, Howard H.
    Liu, Zuozhu
    Quek, Tony Q. S.
    Poor, H. Vincent
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (01) : 317 - 333
  • [13] Adaptive Semi-Asynchronous Federated Learning Over Wireless Networks
    Chen, Zhixiong
    Yi, Wenqiang
    Shin, Hyundong
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (01) : 394 - 409
  • [14] Adaptive Model Pruning and Personalization for Federated Learning Over Wireless Networks
    Liu, Xiaonan
    Ratnarajah, Tharmalingam
    Sellathurai, Mathini
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 4395 - 4411
  • [15] Efficient Client Sampling with Compression in Heterogeneous Federated Learning
    Marnissi, Ouiame
    El Hammouti, Hajar
    Bergou, El Houcine
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [16] From Federated to Fog Learning: Distributed Machine Learning over Heterogeneous Wireless Networks
    Hosseinalipour, Seyyedali
    Brinton, Christopher G.
    Aggarwal, Vaneet
    Dai, Huaiyu
    Chiang, Mung
    IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (12) : 41 - 47
  • [17] Federated Learning Over Energy Harvesting Wireless Networks
    Hamdi, Rami
    Chen, Mingzhe
    Ben Said, Ahmed
    Qaraqe, Marwa
    Poor, H. Vincent
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (01) : 92 - 103
  • [18] Asynchronous Federated Learning Over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Tian, Yuqing
    Yang, Qianqian
    Shan, Hangguan
    Wang, Wei
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6961 - 6978
  • [19] Scheduling and Aggregation Design for Asynchronous Federated Learning Over Wireless Networks
    Hu, Chung-Hsuan
    Chen, Zheng
    Larsson, Erik G.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 874 - 886
  • [20] Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation
    Dinh, Canh T.
    Tran, Nguyen H.
    Nguyen, Minh N. H.
    Hong, Choong Seon
    Bao, Wei
    Zomaya, Albert Y.
    Gramoli, Vincent
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2021, 29 (01) : 398 - 409