Parameter effects on performance of piezoelectric wind energy harvesters based on the interaction between vortex-induced vibration and galloping

被引:1
|
作者
Yang, Xiaokang [1 ]
Niu, Bo [1 ]
He, Kui [1 ]
Liu, Yahui [1 ]
Xie, Ruijie [1 ,2 ]
Xu, Bingke [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Mechatron Engn, Luoyang 471003, Henan, Peoples R China
[2] Ningbo WTOO Machinery Technol Co Ltd, Technol Res Ctr, Ningbo, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy harvesting; wind-induced vibration; vortex-induced vibration; galloping; piezoelectricity; INTERFERENCE; SYSTEM;
D O I
10.1177/09544062241272433
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Our previous research experimentally validated that the interaction between vortex-induced vibration and galloping is an effective method for enhancing the performance of piezoelectric wind energy harvesters under low wind speed conditions. We proposed a distributed-parameter electromechanical coupling model as well. This study aims to investigate the effects of various parameters and optimize the performance of VIV-galloping interactive piezoelectric wind energy harvesters. Initially, we assessed the applicability of the model under different circuit and aerodynamic force conditions and discussed boundary and convergence conditions by replicating previous results. Further, simulations were performed to analyze the effects of the structural parameters of the bluff body and piezoelectric beam. The width or depth of the bluff body significantly influenced the low critical wind speed, interactive occurrence, and electrical output. To achieve a balance between material cost and electrical benefit, we recommend positioning the electrode length from the fixed end with a coverage ratio of at least 60%. Additionally, the output power is highly sensitive to the piezoelectric beam length, but reducing it results in a higher natural frequency and critical wind speed. We fabricated and tested four prototypes, which have demonstrated significantly higher power densities compared with previously reported values at the same wind speed.
引用
收藏
页码:11032 / 11048
页数:17
相关论文
共 50 条
  • [21] A review on micro wind energy harvesters based wind induced vibration
    Zhao X.
    Wang J.
    Cai J.
    1600, Chinese Vibration Engineering Society (36): : 106 - 112
  • [22] A Novel Model of Piezoelectric-Electromagnetic Hybrid Energy Harvester Based on Vortex-induced Vibration
    Zhao, Linchao
    Zhang, Hang
    Su, Fan
    Yin, Zhongjun
    2017 INTERNATIONAL CONFERENCE ON GREEN ENERGY AND APPLICATIONS (ICGEA 2017), 2017, : 105 - 108
  • [23] Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration
    Shan, Xiaobiao
    Tian, Haigang
    Cao, Han
    Xie, Tao
    ENERGIES, 2020, 13 (12)
  • [24] Modeling and experimental study of piezoelectric energy harvester under vortex-induced vibration
    Song R.
    Shan X.
    Li J.
    Xie T.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2016, 50 (02): : 55 - 60and79
  • [25] Vortex-induced vibration effects on mixing performance
    Far, Zahra
    Hekmat, Mohamad Hamed
    Izadpanah, Ehsan
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2022, 182
  • [26] Periodic solutions and frequency lock-in of vortex-induced vibration energy harvesters with nonlinear stiffness
    Li, Zhiyuan
    Zhang, Huirong
    Litak, Grzegorz
    Zhou, Shengxi
    JOURNAL OF SOUND AND VIBRATION, 2024, 568
  • [27] Incident flow effects on the performance of piezoelectric energy harvesters from galloping vibrations
    Abdelkefi, Abdessattar
    Hasanyan, Armanj
    Montgomery, Jacob
    Hall, Duncan
    Hajj, Muhammad R.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2014, 4 (02) : 022002
  • [28] Design and experimental investigation of magnetically coupling piezoelectric energy harvesting system based on galloping and vortex induced vibration
    Zhang, Dan
    Zheng, Shu
    Dou, Yaping
    Xing, Zhilong
    Song, Rujun
    Sui, Wentao
    FERROELECTRICS, 2023, 606 (01) : 61 - 72
  • [29] Incident flow effects on the performance of piezoelectric energy harvesters from galloping vibrations
    Abdessattar Abdelkefi
    Armanj Hasanyan
    Jacob Montgomery
    Duncan Hall
    Muhammad R.Hajj
    Theoretical & Applied Mechanics Letters, 2014, 4 (02) : 97 - 102
  • [30] Modified vortex-induced vibration piezoelectric energy harvester for capturing wind energy from trains moving in tunnels
    Jing, Hao
    Xiang, Hongjun
    Wang, Jingyan
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 382