Replacing the electron-hole transport layer with doping: SCAPS simulation of lead-free germanium-based perovskite solar cells based on CsGeI3

被引:2
|
作者
Lu, Junhua [1 ]
Chen, Shuo [1 ]
Wang, Hairong [3 ]
Qiu, Long [5 ]
Wu, Chenyu [2 ]
Qian, Wencan [1 ]
Wang, Zhijie [4 ]
Huang, Kai [1 ]
Wu, Jiang [1 ]
Chen, Huan [1 ]
Gao, Yuxing [1 ]
机构
[1] Shanghai Univ Elect Power, Coll Energy & Mech Engn, Shanghai 200090, Peoples R China
[2] Shanghai Univ Elect Power, Coll Elect Power Engn, Shanghai 200090, Peoples R China
[3] Shanghai Special Equipment Supervis & Inspection T, Shanghai 200333, Peoples R China
[4] Shanghai Univ Elect Power, Coll Elect & Informat Engn, Shanghai 200090, Peoples R China
[5] Shanghai Elect Power Supervis Consulting Co, Shanghai 200031, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Germanium-based perovskite; Solar cells; SCAPS; Optimizing performance; METHYLAMMONIUM; EFFICIENCY;
D O I
10.1016/j.solmat.2024.112883
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, scientists have shown increasing interest in perovskite solar cells because of their remarkable light absorption capabilities and promising prospects, among which germanium-based perovskite solar cells have been praised for non-toxicity. However, the defects between the charge transport layers affect its performance, and the charge transport layer materials also bring environmental hazards due to some organic properties. In this work, we propose to replace the charge transport layer with a solar cell based entirely on the germanium-based perovskite absorption layer by varying the CsGeI3 doping concentration. We created n-CsGeI3 and p-CsGeI3 layers conducive to electron hole transport, thus effectively reducing the defects between the interface transport layers, improving the electron hole transport environment, and improving the transmission efficiency. We employed SCAPS software for designing and optimizing the cell structure, enabling us to model and fine-tune parameters such as band gap, thickness, doping concentration, and defect density. These optimizations led to the calculation of optimal values, resulting in an impressive 34.57 % efficiency. The cell structure developed in this work validates the feasibility of germanium-based perovskite solar cells without electron hole transport layer, reducing environmental risks and optimizing performance parameters to some extent. This provides a valuable reference for future research on such solar cells.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Improving the Performance of Lead-Free FASnI3-Based Perovskite Solar Cell with Nb2O5 as an Electron Transport Layer
    Hosen, Adnan
    Mian, Md. Suruz
    Al Ahmed, Sheikh Rashel
    ADVANCED THEORY AND SIMULATIONS, 2023, 6 (02)
  • [32] Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells
    Kim, Dong Hoe
    Han, Gill Sang
    Seong, Won Mo
    Lee, Jin-Wook
    Kim, Byeong Jo
    Park, Nam-Gyu
    Hong, Kug Sun
    Lee, Sangwook
    Jung, Hyun Suk
    CHEMSUSCHEM, 2015, 8 (14) : 2392 - 2398
  • [33] Investigation of photovoltaic performance of lead-free CsSnI3-based perovskite solar cell with different hole transport layers: First Principle Calculations and SCAPS-1D Analysis
    Ravidas, Babban Kumar
    Roy, Mukesh Kumar
    Samajdar, Dip Prakash
    SOLAR ENERGY, 2023, 249 : 163 - 173
  • [34] Stable Perovskite Solar Cells Based on WO3 Nanocrystals as Hole Transport Layer
    Li, Zhiwei
    CHEMISTRY LETTERS, 2015, 44 (08) : 1140 - 1141
  • [35] Rubidium based new lead free high performance perovskite solar cells with SnS2 as an electron transport layer
    Reza, Md. Selim
    Rahman, Md. Ferdous
    Reza, Md. Shamim
    Islam, Md. Rasidul
    Rehman, Ubaid Ur
    Chaudhry, Aijaz Rasool
    Irfan, Ahmad
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [36] Reversible Degradation in Hole Transport Layer-Free Carbon-Based Perovskite Solar Cells
    Yang, Yuan-Bo
    Chen, Peng
    Li, Hong-Shi
    Zhao, Qian
    Li, Tian-Tian
    Wu, Yue
    Zhang, Yu
    Gao, Xue-Ping
    Li, Guo-Ran
    SOLAR RRL, 2022, 6 (08)
  • [37] Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells
    Hossain, Mohammad I.
    Alharbi, Fahhad H.
    Tabet, Nouar
    SOLAR ENERGY, 2015, 120 : 370 - 380
  • [38] On the Investigation of Interface Defects of Solar Cells: Lead-Based vs Lead-Free Perovskite
    Basyoni, Marwa Sayed Salem
    Salah, Mostafa M.
    Mousa, Mohamed
    Shaker, Ahmed
    Zekry, Abdelhalim
    Abouelatta, Mohamed
    Alshammari, Mohammad T.
    Al-Dhlan, Kawther A.
    Gontrand, Christian
    IEEE ACCESS, 2021, 9 : 130221 - 130232
  • [39] Comment on: "Performance optimization of lead-free MASnBr3 based perovskite solar cells by SCAPS-1D device simulation" [Solar Energy 249 (2023) 401-413]
    Shankar, Gyanendra
    Kumar, Prashant
    Pradhan, Basudev
    SOLAR ENERGY, 2025, 289
  • [40] Performance Enhancement of Lead-Free CsSnI3 Perovskite Solar Cell: Design and Simulation With Different Electron Transport Layers
    Wahid, Md. Ferdous
    Rahman, Md. Shahriar
    Ahmed, Nowshad
    Al Mamun, Abdullah
    Howlader, Md. Nuralam
    Paul, Tarpan
    Tareq, Md. Motiur Rahman
    Rahman, Md. Sazedur
    Rahman, Md. Mizanur
    IEEE ACCESS, 2024, 12 : 8296 - 8312