Experimental demonstration of deep-learning-enabled adaptive optics

被引:1
作者
Fu, Hao-Bin [1 ,2 ,3 ,4 ,5 ]
Wan, Zu-Yang [6 ]
Li, Yu-huai [1 ,2 ,3 ,4 ,5 ]
Li, Bo [1 ,2 ,3 ,4 ,5 ]
Rong, Zhen [1 ,2 ,3 ,4 ,5 ]
Wang, Gao-Qiang [1 ,2 ,3 ,4 ,5 ]
Yin, Juan [1 ,2 ,3 ,4 ,5 ]
Ren, Ji-Gang [1 ,2 ,3 ,4 ,5 ]
Liu, Wei-Yue [5 ,6 ]
Liao, Sheng-Kai [1 ,2 ,3 ,4 ,5 ]
Cao, Yuan [1 ,2 ,3 ,4 ,5 ]
Peng, Cheng-Zhi [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Anhui, Peoples R China
[6] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 03期
基金
国家重点研发计划;
关键词
QUANTUM KEY DISTRIBUTION; WAVE-FRONT SENSOR; FREE-SPACE; ATMOSPHERIC-TURBULENCE; HARTMANN SENSORS; NEURAL-NETWORKS; SPGD ALGORITHM; COMPENSATION; PERFORMANCE; DAYLIGHT;
D O I
10.1103/PhysRevApplied.22.034047
中图分类号
O59 [应用物理学];
学科分类号
摘要
Satellite-based quantum communication is a promising approach for establishing global-scale quantum networks. In free-space quantum channels, single-mode-fiber coupling plays a crucial role in increasing the signal-to-noise ratio of daylight quantum key distribution (QKD) and ensuring compatibility with standard fiber-based QKD protocols. However, consistently achieving high efficiency and stable single- mode-fiber coupling under strong atmospheric turbulence remains an ongoing experimental challenge. In this study, we experimentally demonstrate an adaptive method based on convolutional neural networks capable of directly estimating phase information from a single defocused image. We developed a convolutional neural network to establish the relationship between intensity distribution and phase information of turbulent distortions. We demonstrate the real-time performance of our deep-learning adaptive method in increasing single-mode-fiber coupling efficiency across various turbulence scales and quantify turbulence frequencies. Notably, the method proved highly effective in strong-turbulence scenarios, with frequencies reaching up to 200 Hz, leading to a significant increase in single-mode-fiber coupling efficiency. We demonstrate the corrective capability of our adaptive method for strong turbulence, enabled by the generalization of the convolutional neural network. Our results offer an efficient solution for daytime free-space QKD applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Joint deep learning optics and reconstruction for unmodulated pyramid wavefront sensing
    Hernandez, Nicolas
    Munoz, Rodrigo
    Weinberger, Camilo
    Guzman, Felipe
    Vera, Esteban
    ADAPTIVE OPTICS SYSTEMS IX, 2024, 13097
  • [42] Intentional deep overfit learning (IDOL): A novel deep learning strategy for adaptive radiation therapy
    Chun, Jaehee
    Park, Justin C.
    Olberg, Sven
    Zhang, You
    Nguyen, Dan
    Wang, Jing
    Kim, Jin Sung
    Jiang, Steve
    MEDICAL PHYSICS, 2022, 49 (01) : 488 - 496
  • [43] Field test demonstration of Adaptive Optics pre-correction for a Terabit Optical Communication Feeder Link
    Broekens, K. A.
    Doelman, N. J.
    Klop, W. A.
    Silvestri, F.
    do Amaral, G. C.
    Vos, Y.
    Veldhuis, E. P.
    Bui, T. -C.
    Korevaar, C. W.
    Ferrario, I.
    Saathof, R.
    2023 IEEE INTERNATIONAL CONFERENCE ON SPACE OPTICAL SYSTEMS AND APPLICATIONS, ICSOS, 2023, : 175 - 181
  • [44] Deep Learning Enabled Spatially Polarization Modulated Mueller Matrix Ellipsometer
    Weng, Jianyu
    Gao, Chao
    Lei, Bing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [45] Deep Learning Enabled Laser Speckle Wavemeter with a High Dynamic Range
    Gupta, Roopam K.
    Bruce, Graham D.
    Powis, Simon J.
    Dholakia, Kishan
    LASER & PHOTONICS REVIEWS, 2020, 14 (09)
  • [46] Deep Learning Enabled Scalable Calibration of a Dynamically Deformed Multimode Fiber
    Fan, Pengfei
    Wang, Yufei
    Ruddlesden, Michael
    Wang, Xuechun
    Thaha, Mohamed A.
    Sun, Jiasong
    Zuo, Chao
    Su, Lei
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (10):
  • [47] Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning
    Allman, Derek
    Reiter, Austin
    Bell, Muyinatu A. Lediju
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) : 1464 - 1477
  • [48] Cache-Enabled Multicast Content Pushing With Structured Deep Learning
    Chen, Qi
    Wang, Wei
    Chen, Wei
    Yu, F. Richard
    Zhang, Zhaoyang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 2135 - 2149
  • [49] 37-element adaptive optics experimental system and turbulence compensation experiments
    Jiang, WH
    Ling, N
    Wu, XB
    Wang, CH
    Xian, H
    Huang, SF
    Rong, ZJ
    Guan, CL
    Jiang, LT
    Gong, ZB
    Wu, Y
    Wang, YJ
    IMAGE PROPAGATION THROUGH THE ATMOSPHERE, 1996, 2828 : 312 - 321
  • [50] Machine learning and deep learning enabled fuel sooting tendency prediction from molecular structure
    Li, Runzhao
    Herreros, Jose Martin
    Tsolakis, Athanasios
    Yang, Wenzhao
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2022, 111