Experimental demonstration of deep-learning-enabled adaptive optics

被引:1
作者
Fu, Hao-Bin [1 ,2 ,3 ,4 ,5 ]
Wan, Zu-Yang [6 ]
Li, Yu-huai [1 ,2 ,3 ,4 ,5 ]
Li, Bo [1 ,2 ,3 ,4 ,5 ]
Rong, Zhen [1 ,2 ,3 ,4 ,5 ]
Wang, Gao-Qiang [1 ,2 ,3 ,4 ,5 ]
Yin, Juan [1 ,2 ,3 ,4 ,5 ]
Ren, Ji-Gang [1 ,2 ,3 ,4 ,5 ]
Liu, Wei-Yue [5 ,6 ]
Liao, Sheng-Kai [1 ,2 ,3 ,4 ,5 ]
Cao, Yuan [1 ,2 ,3 ,4 ,5 ]
Peng, Cheng-Zhi [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Anhui, Peoples R China
[6] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 03期
基金
国家重点研发计划;
关键词
QUANTUM KEY DISTRIBUTION; WAVE-FRONT SENSOR; FREE-SPACE; ATMOSPHERIC-TURBULENCE; HARTMANN SENSORS; NEURAL-NETWORKS; SPGD ALGORITHM; COMPENSATION; PERFORMANCE; DAYLIGHT;
D O I
10.1103/PhysRevApplied.22.034047
中图分类号
O59 [应用物理学];
学科分类号
摘要
Satellite-based quantum communication is a promising approach for establishing global-scale quantum networks. In free-space quantum channels, single-mode-fiber coupling plays a crucial role in increasing the signal-to-noise ratio of daylight quantum key distribution (QKD) and ensuring compatibility with standard fiber-based QKD protocols. However, consistently achieving high efficiency and stable single- mode-fiber coupling under strong atmospheric turbulence remains an ongoing experimental challenge. In this study, we experimentally demonstrate an adaptive method based on convolutional neural networks capable of directly estimating phase information from a single defocused image. We developed a convolutional neural network to establish the relationship between intensity distribution and phase information of turbulent distortions. We demonstrate the real-time performance of our deep-learning adaptive method in increasing single-mode-fiber coupling efficiency across various turbulence scales and quantify turbulence frequencies. Notably, the method proved highly effective in strong-turbulence scenarios, with frequencies reaching up to 200 Hz, leading to a significant increase in single-mode-fiber coupling efficiency. We demonstrate the corrective capability of our adaptive method for strong turbulence, enabled by the generalization of the convolutional neural network. Our results offer an efficient solution for daytime free-space QKD applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Integrating supervised and reinforcement learning for predictive control with an unmodulated pyramid wavefront sensor for adaptive optics
    Pou, Bartomeu
    Smith, Jeffrey
    Quinones, Eduardo
    Martin, Mario
    Gratadour, Damien
    OPTICS EXPRESS, 2024, 32 (21): : 37011 - 37035
  • [32] Deep-Learning Enabled Multicolor Meta-Holography
    Ma, Dina
    Li, Zhancheng
    Liu, Wenwei
    Geng, Guangzhou
    Cheng, Hua
    Li, Junjie
    Tian, Jianguo
    Chen, Shuqi
    ADVANCED OPTICAL MATERIALS, 2022, 10 (15)
  • [33] Deep Learning Enabled Spectrum Sensing Radio for Opportunistic Usage
    Khan, Muneeb Aalam
    Shaikh, Aamir Zeb
    Naqvi, Shabbar
    Khadim, Saima
    Altar, Talat
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (11): : 179 - 183
  • [34] Adaptive-Optics-Enabled Quantum Communication: A Technique for Daytime Space-To-Earth Links
    Gruneisen, Mark T.
    Eickhoff, Mark L.
    Newey, Scott C.
    Stoltenberg, Kurt E.
    Morris, Jeffery F.
    Bareian, Michael
    Harris, Mark A.
    Oesch, Denis W.
    Oliker, Michael D.
    Flanagan, Michael B.
    Kay, Brian T.
    Schiller, Johnathan D.
    Lanning, R. Nicholas
    PHYSICAL REVIEW APPLIED, 2021, 16 (01):
  • [35] Progress Indication for Deep Learning Model Training: A Feasibility Demonstration
    Dong, Qifei
    Luo, Gang
    IEEE ACCESS, 2020, 8 (08): : 79811 - 79843
  • [36] Spectral Clustering With Adaptive Neighbors for Deep Learning
    Zhao, Yang
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (04) : 2068 - 2078
  • [37] Applications of Machine and Deep Learning in Adaptive Immunity
    Pertseva, Margarita
    Gao, Beichen
    Neumeier, Daniel
    Yermanos, Alexander
    Reddy, Sai T.
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 12, 2021, 2021, 12 : 39 - 62
  • [38] Is visual resolution after adaptive optics correction susceptible to perceptual learning?
    Rossi, Ethan A.
    Roorda, Austin
    JOURNAL OF VISION, 2010, 10 (12): : 1 - 14
  • [39] Adaptive optics control using model-based reinforcement learning
    Nousiainen, Jalo
    Rajani, Chang
    Kasper, Markus
    Helin, Tapio
    OPTICS EXPRESS, 2021, 29 (10) : 15327 - 15344
  • [40] Deep Learning Assisted Adaptive Index Modulation for mmWave Communications With Channel Estimation
    Liu, Haochen
    Zhang, Yaoyuan
    Zhang, Xiaoyu
    El-Hajjar, Mohammed
    Yang, Lie-Liang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) : 9186 - 9201