Co-pyrolysis behavior of municipal solid waste and food waste residue: A thermogravimetric study to discern synergistic effect

被引:3
|
作者
Embaye, Tedla Medhane [1 ]
Ahmed, Muhammed Bilal [1 ]
Deng, Nan [2 ]
Cui, Weidong [3 ]
Bukhsh, Khuda [1 ]
Zhang, Lan [3 ]
Zhu, Lihua [3 ]
Wang, Xuebin [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Instrumental Anal Ctr, Xian 710049, Shaanxi, Peoples R China
[3] Henan Prov Boiler Pressure Vessel Safety Inspect I, Zhengzhou 450016, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Synergistic; Municipal solid waste; TGA; Co; -pyrolysis; Food waste; SEWAGE-SLUDGE; PAPER SLUDGE; RICE HUSK; KINETICS; COMPONENTS; PRODUCTS;
D O I
10.1016/j.psep.2024.06.137
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Effective solid waste disposal necessitates suitable combination and clean conversion technologies to maximize resource utilization. Thus, this study investigates the behavior of co-pyrolysis in municipal solid waste (MSW) and food waste (FW) via thermogravimetric analysis, aiming to discern synergistic effects and optimize waste to energy conversion. The impacts of heating rate and blending ratios were evaluated under an inert N2 atmosphere, within a temperature range of 30-900 degrees C, during single and combined pyrolysis processes respectively. Results revealed slight variations in weight loss patterns and thermal decomposition behavior. When heating rate increased from 10 to 30 degrees C.min- 1, decomposition process delayed, resulting in higher initial (Ti), peak (TP), and final (Tf) temperatures due to inadequate heat transfer. As food waste increased, mass loss rose and favorable synergistic effect was observed at 20 % FW during medium temperatures, while other blends showed inhibitory effects. The pyrolytic index (D) rose nonlinearly from 6.29 x 10- 7 to 7.72 x 10-7 with a higher FW proportion, peaking at 20 % FW, suggesting an optimal MSW and FW mixing ratio. This blend also exhibited the lowest activation energy, indicating a more efficient thermal decomposition process. Those outcomes offer crucial insights for optimizing co-pyrolysis systems and provide essential information for co-disposal of MSW and FW, potentially reducing pollutant emissions and enhancing waste to energy conversion.
引用
收藏
页码:1274 / 1284
页数:11
相关论文
共 50 条
  • [41] State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges
    Su, Guangcan
    Ong, Hwai Chyuan
    Fattah, I. M. Rizwanul
    Ok, Yong Sik
    Jang, Jer-Huan
    Wang, Chin-Tsan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 809
  • [42] Investigation of co-pyrolysis characteristics and kinetics of municipal solid waste and paper sludge through TG-FTIR and DAEM
    Fang, Shiwen
    Lin, Yan
    Huang, Zhen
    Huang, Hongyu
    Chen, Shu
    Ding, Lixing
    THERMOCHIMICA ACTA, 2021, 700
  • [43] Distribution of Hg during sewage sludge and municipal solid waste Co-pyrolysis: Influence of multiple factors
    Sun, Yunan
    Tao, Junyu
    Chen, Guanyi
    Yan, Beibei
    Cheng, Zhanjun
    WASTE MANAGEMENT, 2020, 107 : 276 - 284
  • [44] Modeling and kinetic analysis for co-pyrolysis of sewage sludge and municipal solid waste under multiple factors
    Zhang, Hongnan
    Sun, Yunan
    Tao, Junyu
    Du, Chengming
    Yan, Beibei
    Li, Xiangping
    Chen, Guanyi
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2025,
  • [45] Pyrolysis of municipal food waste: A sustainable potential approach for solid food waste management and organic crop fertilizer production
    Boakye, Patrick
    Nuagah, Miriam Beneireh
    Oduro-Kwarteng, Sampson
    Appiah-Effah, Eugene
    Kanjua, Jolly
    Antwi, Anthony Boakye
    Darkwah, Lawrence
    Sarkodie, Kwame
    Sokama-Neuyam, Yen Adams
    SUSTAINABLE ENVIRONMENT, 2023, 9 (01):
  • [46] Hydrogen-rich syngas produced from the co-pyrolysis of municipal solid waste and wheat straw
    Zhao Jun
    Wang Shuzhong
    Wu Zhiqiang
    Meng Haiyu
    Chen Lin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (31) : 19701 - 19708
  • [47] Energy out of waste: kinetics and thermolysis of co-pyrolysis of biomass and municipal plastic waste
    Baranitharan, P.
    Elaiyarasan, U.
    Sakthivel, R.
    Sriariyanun, Malinee
    Tamilarasan, N.
    BIOMASS CONVERSION AND BIOREFINERY, 2024, : 15341 - 15359
  • [48] Sustainable Environmental Assessment of Waste-to-Energy Practices: Co-Pyrolysis of Food Waste and Discarded Meal Boxes
    Li, Gang
    Yang, Tenglun
    Xiao, Wenbo
    Wu, Jiahui
    Xu, Fuzhuo
    Li, Lianliang
    Gao, Fei
    Huang, Zhigang
    FOODS, 2022, 11 (23)
  • [49] Synergistic effect on co-pyrolysis mechanism and kinetics of waste coal blended with high-rank coal and biomass
    Krishna Kant Dwivedi
    A. K. Pramanick
    M. K. Karmakar
    P. K. Chatterjee
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 8323 - 8343
  • [50] Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste
    Hu, Shanchao
    Ma, Xiaoqian
    Lin, Yousheng
    Yu, Zhaosheng
    Fang, Shiwen
    ENERGY CONVERSION AND MANAGEMENT, 2015, 99 : 112 - 118