Co-pyrolysis behavior of municipal solid waste and food waste residue: A thermogravimetric study to discern synergistic effect

被引:3
|
作者
Embaye, Tedla Medhane [1 ]
Ahmed, Muhammed Bilal [1 ]
Deng, Nan [2 ]
Cui, Weidong [3 ]
Bukhsh, Khuda [1 ]
Zhang, Lan [3 ]
Zhu, Lihua [3 ]
Wang, Xuebin [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Instrumental Anal Ctr, Xian 710049, Shaanxi, Peoples R China
[3] Henan Prov Boiler Pressure Vessel Safety Inspect I, Zhengzhou 450016, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Synergistic; Municipal solid waste; TGA; Co; -pyrolysis; Food waste; SEWAGE-SLUDGE; PAPER SLUDGE; RICE HUSK; KINETICS; COMPONENTS; PRODUCTS;
D O I
10.1016/j.psep.2024.06.137
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Effective solid waste disposal necessitates suitable combination and clean conversion technologies to maximize resource utilization. Thus, this study investigates the behavior of co-pyrolysis in municipal solid waste (MSW) and food waste (FW) via thermogravimetric analysis, aiming to discern synergistic effects and optimize waste to energy conversion. The impacts of heating rate and blending ratios were evaluated under an inert N2 atmosphere, within a temperature range of 30-900 degrees C, during single and combined pyrolysis processes respectively. Results revealed slight variations in weight loss patterns and thermal decomposition behavior. When heating rate increased from 10 to 30 degrees C.min- 1, decomposition process delayed, resulting in higher initial (Ti), peak (TP), and final (Tf) temperatures due to inadequate heat transfer. As food waste increased, mass loss rose and favorable synergistic effect was observed at 20 % FW during medium temperatures, while other blends showed inhibitory effects. The pyrolytic index (D) rose nonlinearly from 6.29 x 10- 7 to 7.72 x 10-7 with a higher FW proportion, peaking at 20 % FW, suggesting an optimal MSW and FW mixing ratio. This blend also exhibited the lowest activation energy, indicating a more efficient thermal decomposition process. Those outcomes offer crucial insights for optimizing co-pyrolysis systems and provide essential information for co-disposal of MSW and FW, potentially reducing pollutant emissions and enhancing waste to energy conversion.
引用
收藏
页码:1274 / 1284
页数:11
相关论文
共 50 条
  • [21] Co-biodrying of sewage sludge and organic fraction of municipal solid waste: A thermogravimetric assessment of the blends
    Zhang, Difang
    Luo, Wenhai
    Liu, Yifei
    Yuan, Jing
    Li, Guoxue
    WASTE MANAGEMENT, 2019, 95 : 652 - 660
  • [22] Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics
    Xu, Shannan
    Cao, Bin
    Uzoejinwa, Benjamin Bernard
    Odey, Emmanuel Alepu
    Wang, Shuang
    Shang, Hao
    Li, Chunhou
    Hu, Yamin
    Wang, Qian
    Nwakaire, Joel N.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2020, 137 : 34 - 48
  • [23] Synergistic effect on co-pyrolysis mechanism and kinetics of waste coal blended with high-rank coal and biomass
    Dwivedi, Krishna Kant
    Pramanick, A. K.
    Karmakar, M. K.
    Chatterjee, P. K.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (15) : 8323 - 8343
  • [24] CO-pyrolysis characteristics and kinetic analysis of municipal solid waste and biomass briquette
    Chen, Zeyu
    Xing, Xianjun
    Li, Yongling
    Mi, Mengxing
    Zhang, Xuefei
    Zhu, Chengcheng
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2020, 41 (10): : 340 - 346
  • [25] Co-pyrolysis characteristics and product distributions of municipal solid waste and corn stalk
    Jia, Jinwei
    Liu, Lu
    Yang, Fengsheng
    Fu, Xiaoheng
    Yang, Di
    Hui, Helong
    Fu, Xingmin
    Shu, Xinqian
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (05) : 510 - 515
  • [26] Study on the co-pyrolysis of waste tires and plastics
    Li, Dan
    Lei, Shijun
    Rajput, Gulzeb
    Zhong, Lei
    Ma, Wenchao
    Chen, Guanyi
    ENERGY, 2021, 226
  • [27] Thermogravimetric analysis and pyrolysis product characterization of municipal solid waste using sludge fly ash as additive
    Gao, Ningbo
    Sipra, Ayesha Tariq
    Quan, Cui
    FUEL, 2020, 281 (281)
  • [28] Synergistic production of fuels from co-pyrolysis of lignite coal and waste plastic
    Khan, Asif
    Iqbal, Naseem
    Noor, Tayyaba
    Hassan, Muhammad
    Akhter, Javaid
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 113
  • [29] Synergistic effect of co-pyrolysis between Naomaohu coal and waste plastics
    Duan, Jiale
    Wang, Kechao
    Wen, Yuxin
    Zhang, Rui
    Jin, Lijun
    Hu, Haoquan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 183
  • [30] Influence of ultrasonic pretreatment on the co-pyrolysis characteristics and kinetic parameters of municipal solid waste and paper mill sludge
    Fang, Shiwen
    Lin, Yousheng
    Lin, Yan
    Chen, Shu
    Shen, Xiangyang
    Zhong, Tianming
    Ding, Lixing
    Ma, Xiaoqian
    ENERGY, 2020, 190 (190)