Skyrmion motion induced by spin-waves on magnetic nanotubes

被引:2
作者
Abdulrazak, Tijjani [1 ,2 ,3 ]
Liu, Xuejuan [1 ,2 ,4 ]
Wang, Zhenyu [1 ,2 ]
Cao, Yunshan [1 ,2 ]
Yan, Peng [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Device, Chengdu 610054, Peoples R China
[3] Bayero Univ, Dept Phys, Kano 700006, Nigeria
[4] Chengdu Neusoft Univ, Sch Healthcare Technol, Chengdu 611844, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ferromagnetic; magnetic nanotube; Mumax3; software; skyrmion; spin-wave; 75.50.Gg; 71.35.Ji; 12.39.Dc; 75.30.Ds;
D O I
10.1088/1674-1056/ad5d64
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the skyrmion motion driven by spin waves on magnetic nanotubes through micromagnetic simulations. Our key results include demonstrating the stability and enhanced mobility of skyrmions on the edgeless nanotube geometry, which prevents destruction at boundaries - a common issue in planar geometries. We explore the influence of the damping coefficient, amplitude, and frequency of microwaves on skyrmion dynamics, revealing a non-uniform velocity profile characterized by acceleration and deceleration phases. Our results show that the skyrmion Hall effect is significantly modulated on nanotubes compared to planar models, with specific dependencies on the spin-wave parameters. These findings provide insights into skyrmion manipulation for spintronic applications, highlighting the potential for high-speed and efficient information transport in magnonic devices.
引用
收藏
页数:6
相关论文
共 37 条
  • [1] Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature
    Barker, Joseph
    Tretiakov, Oleg A.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [2] Skyrmions on the track
    Fert, Albert
    Cros, Vincent
    Sampaio, Joao
    [J]. NATURE NANOTECHNOLOGY, 2013, 8 (03) : 152 - 156
  • [3] Mitigation of Magnus Force in Current-Induced Skyrmion Dynamics
    Fook, Hiu Tung
    Gan, Wei Liang
    Purnama, Indra
    Lew, Wen Siang
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (11)
  • [4] Heinze S, 2011, NAT PHYS, V7, P713, DOI [10.1038/nphys2045, 10.1038/NPHYS2045]
  • [5] An effect of the Gilbert damping constant on the skyrmion Hall effect
    Ishida, Yuichi
    Kondo, Kenji
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 493
  • [6] Universal current-velocity relation of skyrmion motion in chiral magnets
    Iwasaki, Junichi
    Mochizuki, Masahito
    Nagaosa, Naoto
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [7] Skyrmionium - high velocity without the skyrmion Hall effect
    Kolesnikov, Alexander G.
    Stebliy, Maksim E.
    Samardak, Alexander S.
    Ognev, Alexey V.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [8] Dynamics of an Insulating Skyrmion under a Temperature Gradient
    Kong, Lingyao
    Zang, Jiadong
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (06)
  • [9] An Improved Racetrack Structure for Transporting a Skyrmion
    Lai, P.
    Zhao, G. P.
    Tang, H.
    Ran, N.
    Wu, S. Q.
    Xia, J.
    Zhang, X.
    Zhou, Y.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] Internal modes of a skyrmion in the ferromagnetic state of chiral magnets
    Lin, Shi-Zeng
    Batista, Cristian D.
    Saxena, Avadh
    [J]. PHYSICAL REVIEW B, 2014, 89 (02):