Evaluation of Progressive Architectural Distortion in Idiopathic Pulmonary Fibrosis Using Deformable Registration of Sequential CT Images

被引:0
|
作者
Yasuda, Naofumi [1 ,2 ]
Iwasawa, Tae [1 ,2 ]
Baba, Tomohisa [3 ]
Misumi, Toshihiro [4 ]
Cheng, Shihyao [2 ]
Kato, Shingo [2 ]
Utsunomiya, Daisuke [2 ]
Ogura, Takashi [3 ]
机构
[1] Kanagawa Cardiovasc & Resp Ctr, Dept Radiol, 6-16-1 Tomioka Higashi,Kanazawa Ku, Yokohama, Kanagawa 2360051, Japan
[2] Yokohama City Univ, Grad Sch Med, Dept Diagnost Radiol, 3-9 Fukuura,Kanazawa Ku, Yokohama, Kanagawa 2360004, Japan
[3] Kanagawa Cardiovasc & Resp Ctr, Dept Resp Med, 6-16-1 Tomioka Higashi,Kanazawa Ku, Yokohama, Kanagawa 2360051, Japan
[4] Yokohama City Univ, Grad Sch Med, Dept Biostat, 3-9 Fukuura,Kanazawa Ku, Yokohama, Kanagawa 2360004, Japan
关键词
idiopathic pulmonary fibrosis; computed tomography; deformable image registration; three-dimensional average displacement; progressive pulmonary fibrosis; INTERSTITIAL PNEUMONIAS; FLEISCHNER-SOCIETY; DIAGNOSIS;
D O I
10.3390/diagnostics14151650
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Monitoring the progression of idiopathic pulmonary fibrosis (IPF) using CT primarily focuses on assessing the extent of fibrotic lesions, without considering the distortion of lung architecture. Objectives: To evaluate three-dimensional average displacement (3D-AD) quantification of lung structures using deformable registration of serial CT images as a parameter of local lung architectural distortion and predictor of IPF prognosis. Materials and Methods: Patients with IPF evaluated between January 2016 and March 2017 who had undergone CT at least twice were retrospectively included (n = 114). The 3D-AD was obtained by deformable registration of baseline and follow-up CT images. A computer-aided quantification software measured the fibrotic lesion volume. Cox regression analysis evaluated these variables to predict mortality. Results: The 3D-AD and the fibrotic lesion volume change were significantly larger in the subpleural lung region (5.2 mm (interquartile range (IQR): 3.6-7.1 mm) and 0.70% (IQR: 0.22-1.60%), respectively) than those in the inner region (4.7 mm (IQR: 3.0-6.4 mm) and 0.21% (IQR: 0.004-1.12%), respectively). Multivariable logistic analysis revealed that subpleural region 3D-AD and fibrotic lesion volume change were independent predictors of mortality (hazard ratio: 1.12 and 1.23; 95% confidence interval: 1.02-1.22 and 1.10-1.38; p = 0.01 and p < 0.001, respectively). Conclusions: The 3D-AD quantification derived from deformable registration of serial CT images serves as a marker of lung architectural distortion and a prognostic predictor in patients with IPF.
引用
收藏
页数:13
相关论文
共 46 条
  • [1] Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions
    Reaungamornrat, S.
    De Silva, T.
    Uneri, A.
    Goerres, J.
    Jacobson, M.
    Ketcha, M.
    Vogt, S.
    Kleinszig, G.
    Khanna, A. J.
    Wolinsky, J-P
    Prince, J. L.
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (23) : 8276 - 8297
  • [2] Evaluation of deformable image registration accuracy for CT images of the thorax region
    Sarudis, Sebastian
    Karlsson, Anna
    Bibac, Dan
    Nyman, Jan
    Back, Anna
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2019, 57 : 191 - 199
  • [3] Biomechanical deformable image registration of longitudinal lung CT images using vessel information
    Cazoulat, Guillaume
    Owen, Dawn
    Matuszak, Martha M.
    Balter, James M.
    Brock, Kristy K.
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (13) : 4826 - 4839
  • [4] Evaluation of a Learning-based Deformable Registration Method on Abdominal CT Images
    Bhattacharjee, R.
    Heitz, F.
    Noblet, V
    Sharma, S.
    Sharma, N.
    IRBM, 2021, 42 (02) : 94 - 105
  • [5] Prognostic Factors in Patients with Idiopathic Pulmonary Fibrosis; Evaluation using Quantitative CT analysis of Fibrosis and Emphysema
    Nakagawa, Hiroaki
    Fukunaga, Kentaro
    Ikeda, Satoshi
    Okuda, Ryo
    Kitamura, Hideya
    Baba, Tomohisa
    Nakano, Yasutaka
    Ogura, Takashi
    EUROPEAN RESPIRATORY JOURNAL, 2019, 54
  • [6] Benchmarking and performance evaluation of a novel deformable image registration software for radiotherapy CT images
    Alshammari, Shorug S.
    Yaddanapudi, Sridhar
    Ivancic, Rok
    Anderle, Kristjan
    Li, Jonathan G.
    Furutani, Keith M.
    Beltran, Chris J.
    Lu, Bo
    TECHNICAL INNOVATIONS & PATIENT SUPPORT IN RADIATION ONCOLOGY, 2024, 32
  • [8] Computer-Aided Diagnosis of Pulmonary Fibrosis Using Deep Learning and CT Images
    Christe, Andreas
    Peters, Alan A.
    Drakopoulos, Dionysios
    Heverhagen, Johannes T.
    Geiser, Thomas
    Stathopoulou, Thomai
    Christodoulidis, Stergios
    Anthimopoulos, Marios
    Mougiakakou, Stavroula G.
    Ebner, Lukas
    INVESTIGATIVE RADIOLOGY, 2019, 54 (10) : 627 - 632
  • [9] Automatic landmark generation for deformable image registration evaluation for 4D CT images of lung
    Vickress, J.
    Battista, J.
    Barnett, R.
    Morgan, J.
    Yartsev, S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (20) : 7236 - 7245
  • [10] A quantitative evaluation of deformable image registration based on MV cone beam CT images: Impact of deformation magnitudes and image modalities
    Huang, Yuliang
    Li, Chenguang
    Wang, Haiyang
    Hu, Qiaoqiao
    Wang, Ruoxi
    Chang, Cheng
    Ma, Wenjun
    Li, Weibo
    Wu, Hao
    Zhang, Yibao
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 71 : 82 - 87