Global aerosol retrieval over land from Landsat imagery integrating Transformer and Google Earth Engine

被引:3
作者
Wei, Jing [1 ]
Wang, Zhihui [2 ]
Li, Zhanqing [1 ]
Li, Zhengqiang [3 ,4 ]
Pang, Shulin [5 ]
Xi, Xinyuan [6 ]
Cribb, Maureen [1 ]
Sun, Lin [2 ]
机构
[1] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Dept Atmospher & Ocean Sci, College Pk, MD 20740 USA
[2] Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, State Environm Protect Key Lab Satellite Remote Se, Beijing, Peoples R China
[4] Henan Univ, Coll Geog & Environm Sci, Zhengzhou, Peoples R China
[5] Beijing Normal Univ, Fac Geog Sci, Innovat Res Ctr Satellite Applicat, Beijing, Peoples R China
[6] Ocean Univ China, Inst Adv Ocean Study, Coll Marine Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Landsat; AOD retrieval; Transformer; Google Earth Engine; eXplainable Artificial Intelligence; OPTICAL DEPTH; ATMOSPHERIC CORRECTION; PARTICULATE MATTER; MODIS; CLIMATE; AERONET; VALIDATION; ALGORITHM; PRODUCTS; IMPACT;
D O I
10.1016/j.rse.2024.114404
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landsat imagery offers remarkable potential for various applications, including land monitoring and environmental assessment, thanks to its high spatial resolution and over 50 years of data records. However, the presence of atmospheric aerosols greatly hinders the precision of land classification and the quantitative retrieval of surface parameters. There is a pressing need for reliable and accurate global aerosol optical depth (AOD) data derived from Landsat imagery, particularly for atmospheric correction purposes and various other applications. To address this issue, we introduce an innovative framework for retrieving AOD from Landsat imagery over land, which leverages the deep-learning Transformer model (named AeroTrans-Landsat) and operates on the Google Earth Engine (GEE) cloud platform. We gather Landsat 8 and 9 images starting from their launch dates (February 2013 and September 2021, respectively) until the end of 2022, which are used to construct a robust aerosol retrieval model. The global AOD retrievals are then rigorously validated across similar to 560 monitoring stations on land using diverse spatiotemporally independent methods. Leveraging information from multiple spectral channels, which contributes to 80 % according to the SHapley Additive exPlanation (SHAP) method, our retrieved AODs from 2013 to 2022 generally agree well with surface observations, with a sample-based cross-validation correlation coefficient of 0.905 and a root-mean-square error of 0.083. Around 86 % and 55 % of our AOD retrievals meet the criteria of Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue expected errors [+/-(0.05 + 20 %)] and the Global Climate Observation System {[max(0.03, 10 %)]}, respectively. Additionally, our model is not as sensitive to fluctuations in both surface and atmospheric conditions, enabling the generation of spatially continuous AOD distributions with exceptionally fine-scale information over dark to bright surfaces. This capability extends to areas characterized by high pollution levels originating from both anthropogenic and natural sources.
引用
收藏
页数:15
相关论文
共 73 条
  • [1] Widespread 2013-2020 decreases and reduction challenges of organic aerosol in China
    Chen Q.
    Miao R.
    Geng G.
    Shrivastava M.
    Dao X.
    Xu B.
    Sun J.
    Zhang X.
    Liu M.
    Tang G.
    Tang Q.
    Hu H.
    Huang R.-J.
    Wang H.
    Zheng Y.
    Qin Y.
    Guo S.
    Hu M.
    Zhu T.
    [J]. Nature Communications, 15 (1)
  • [2] The 50-year Landsat collection 2 archive
    Crawford, Christopher J.
    Roy, David P.
    Arab, Saeed
    Barnes, Christopher
    Vermote, Eric
    Hulley, Glynn
    Gerace, Aaron
    Choate, Mike
    Engebretson, Christopher
    Micijevic, Esad
    Schmidt, Gail
    Anderson, Cody
    Anderson, Martha
    Bouchard, Michelle
    Cook, Bruce
    Dittmeier, Ray
    Howard, Danny
    Jenkerson, Calli
    Kim, Minsu
    Kleyians, Tania
    Maiersperger, Thomas
    Mueller, Chase
    Neigh, Christopher
    Owen, Linda
    Page, Benjamin
    Pahlevan, Nima
    Rengarajan, Rajagopalan
    Roger, Jean-Claude
    Sayler, Kristi
    Scaramuzza, Pat
    Skakun, Sergii
    Yan, Lin
    Zhang, Hankui K.
    Zhu, Zhe
    Zahn, Steve
    [J]. SCIENCE OF REMOTE SENSING, 2023, 8
  • [3] Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters
    De Keukelaere, L.
    Sterckx, S.
    Adriaensen, S.
    Knaeps, E.
    Reusen, I
    Giardino, C.
    Bresciani, M.
    Hunter, P.
    Neil, C.
    Van der Zande, D.
    Vaiciute, D.
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01): : 525 - 542
  • [4] Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation
    Diego Rodriguez, Juan
    Perez, Aritz
    Antonio Lozano, Jose
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (03) : 569 - 575
  • [5] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows
    Dong, Xiaoyi
    Bao, Jianmin
    Chen, Dongdong
    Zhang, Weiming
    Yu, Nenghai
    Yuan, Lu
    Chen, Dong
    Guo, Baining
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12114 - 12124
  • [6] Dosovitskiy A., 2021, P ICLR 2021 9 INT C, DOI DOI 10.48550/ARXIV.2010.11929
  • [7] Atmospheric Correction Inter-comparison eXercise, ACIX-II Land: An assessment of atmospheric correction processors for Landsat 8 and Sentinel-2 over land
    Doxani, Georgia
    Vermote, Eric F.
    Roger, Jean-Claude
    Skakun, Sergii
    Gascon, Ferran
    Collison, Alan
    De Keukelaere, Liesbeth
    Desjardins, Camille
    Frantz, David
    Hagolle, Olivier
    Kim, Minsu
    Louis, Jerome
    Pacifici, Fabio
    Pflug, Bringfried
    Poilve, Herve
    Ramon, Didier
    Richter, Rudolf
    Yin, Feng
    [J]. REMOTE SENSING OF ENVIRONMENT, 2023, 285
  • [8] Atmospheric Correction Inter-Comparison Exercise
    Doxani, Georgia
    Vermote, Eric
    Roger, Jean-Claude
    Gascon, Ferran
    Adriaensen, Stefan
    Frantz, David
    Hagolle, Olivier
    Hollstein, Andre
    Kirches, Grit
    Li, Fuqin
    Louis, Jerome
    Mangin, Antoine
    Pahlevan, Nima
    Pflug, Bringfried
    Vanhellemont, Quinten
    [J]. REMOTE SENSING, 2018, 10 (02):
  • [9] Comparison of AERONET and SKYRAD4.2 inversion products retrieved from a Cimel CE318 sunphotometer
    Estelles, V.
    Campanelli, M.
    Utrillas, M. P.
    Exposito, F.
    Martinez-Lozano, J. A.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (03) : 569 - 579
  • [10] Impact of environmental attributes on the uncertainty in MAIAC/MODIS AOD retrievals: A comparative analysis
    Falah, Somaya
    Mhawish, Alaa
    Sorek-Hamer, Meytar
    Lyapustin, Alexei I.
    Kloog, Itai
    Banerjee, Tirthankar
    Kizel, Fadi
    Broday, David M.
    [J]. ATMOSPHERIC ENVIRONMENT, 2021, 262