Capturing differential diffusion effects in large eddy simulation of turbulent premixed flames

被引:1
|
作者
Yao, Matthew X. [1 ]
Blanquart, Guillaume [1 ]
机构
[1] CALTECH, Dept Mech & Civil Engn, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Hydrogen; Large Eddy simulation; Differential diffusion; Tabulated chemistry; Lewis number; DIRECT NUMERICAL SIMULATIONS; MODEL; COMBUSTION; CHEMISTRY; LES; VALIDATION; INCLUSION; MANIFOLDS;
D O I
10.1016/j.proci.2024.105500
中图分类号
O414.1 [热力学];
学科分类号
摘要
The combustion of hydrogen in low-swirl burners (LSB) is considered as an alternative means of generating power because it is characterized by low emissions and high efficiency. However, lean hydrogen premixed flames are subject to thermodiffusive instabilities induced by the large diffusivity, and hence small Lewis number, of hydrogen. The numerical modelling of these flows remains challenging because the transition of small scale instabilities into large scale turbulent structures cannot be modelled by conventional strategies. Recently, Schlup and Blanquart (2019) developed a two-equation model which captures successfully the phenomena arising from differential diffusion and curvature effects. The chemistry tabulation framework is based on the classical progress variable approach and introduces an additional transport equation to account for fluctuations in the local equivalence ratio due to these effects. In the current work, this model is extended to large eddy simulation (LES) of an LSB. The LES model is applied first to a CH 4 /air flame (cent cent = 0.59) . 59 ) to validate the overall simulation framework and then to a H 2 /air flame (cent cent = 0 . 4 ). The results obtained with this new formulation show significant improvement over the traditional one-equation formulation. The unique flow field exhibited by lean hydrogen is reproduced successfully using the two-equation model.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Large Eddy Simulation of Turbulent Premixed Swirling Flames Using Dynamic Thickened Flame with Tabulated Detailed Chemistry
    Hongda Zhang
    Taohong Ye
    Gaofeng Wang
    Peng Tang
    Minghou Liu
    Flow, Turbulence and Combustion, 2017, 98 : 841 - 885
  • [42] Large-eddy Simulation of Triangular-stabilized Lean Premixed Turbulent Flames: Quality and Error Assessment
    Manickam, Bhuvaneswaran
    Franke, Joerg
    Muppala, Siva P. R.
    Dinkelacker, Friedrich
    FLOW TURBULENCE AND COMBUSTION, 2012, 88 (04) : 563 - 596
  • [43] Large Eddy Simulation of NO Formation in Non-Premixed Turbulent Jet Flames with Flamelet/Progress Variable Approach
    WAN Jiawei
    GUO Junjun
    WEI Zhengyun
    JIANG Xudong
    LIU Zhaohui
    Journal of Thermal Science, 2024, 33 (06) : 2399 - 2412
  • [44] Large-eddy Simulation of Triangular-stabilized Lean Premixed Turbulent Flames: Quality and Error Assessment
    Bhuvaneswaran Manickam
    Joerg Franke
    Siva P. R. Muppala
    Friedrich Dinkelacker
    Flow, Turbulence and Combustion, 2012, 88 : 563 - 596
  • [45] Large Eddy Simulation of Turbulent Premixed Swirling Flames Using Dynamic Thickened Flame with Tabulated Detailed Chemistry
    Zhang, Hongda
    Ye, Taohong
    Wang, Gaofeng
    Tang, Peng
    Liu, Minghou
    FLOW TURBULENCE AND COMBUSTION, 2017, 98 (03) : 841 - 885
  • [46] Large Eddy Simulation of NO Formation in Non-Premixed Turbulent Jet Flames with Flamelet/Progress Variable Approach
    Wan, Jiawei
    Guo, Junjun
    Wei, Zhengyun
    Jiang, Xudong
    Liu, Zhaohui
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (06) : 2399 - 2412
  • [47] Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames
    Benoît Fiorina
    Denis Veynante
    Sébastien Candel
    Flow, Turbulence and Combustion, 2015, 94 : 3 - 42
  • [48] Large eddy simulation of turbulent supersonic hydrogen flames with OpenFOAM
    Zhang, Huangwei
    Zhao, Majie
    Huang, Zhiwei
    FUEL, 2020, 282 (282)
  • [49] Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames
    Fiorina, Benoit
    Veynante, Denis
    Candel, Sebastien
    FLOW TURBULENCE AND COMBUSTION, 2015, 94 (01) : 3 - 42
  • [50] Large Eddy Simulation on the Effects of Pressure on Syngas/Air Turbulent Nonpremixed Jet Flames
    Ciottoli, Pietro P.
    Lee, Bok Jik
    Lapenna, Pasquale E.
    Galassi, Riccardo Malpica
    Hernandez-Perez, Francisco E.
    Martelli, Emanuele
    Valorani, Mauro
    Im, Hong G.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2020, 192 (10) : 1963 - 1996