BINOMIAL SUMS WITH HARMONIC AND FIBONACCI NUMBERS

被引:0
|
作者
Duran, Omer [1 ]
Omur, Nese [1 ]
Koparal, Sibel [2 ]
机构
[1] Kocaeli Univ, Dept Math, TR-41380 Kocaeli, Turkiye
[2] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkiye
来源
JOURNAL OF SCIENCE AND ARTS | 2024年 / 02期
关键词
Fibonacci numbers; harmonic numbers; generating function;
D O I
10.46939/J.Sci.Arts-24.2-a13
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we define new sequence Sn(a, n (a, b) with parameters a and b with the help of the generalized harmonic numbers. Also, we get some new sums involving harmonic, Fibonacci and Lucas numbers.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 50 条
  • [41] ON FACTORIALS EXPRESSIBLE AS SUMS OF AT MOST THREE FIBONACCI NUMBERS
    Luca, Florian
    Siksek, Samir
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 747 - 763
  • [42] FORMULAS FOR BINOMIAL DOUBLE SUMS RELATED TO LUCAS NUMBERS
    Tasdemir, Funda
    Toska, Tugba Goresim
    ARS COMBINATORIA, 2020, 152 : 235 - 246
  • [43] RIORDAN MATRICES AND SUMS OF HARMONIC NUMBERS
    Munarini, Emanuele
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2011, 5 (02) : 176 - 200
  • [44] On harmonic numbers and nonlinear Euler sums
    Xu, Ce
    Cai, Yulin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 1009 - 1042
  • [45] A Relation Between Binomial Coefficients and Fibonacci Numbers to the Higher Power
    Che, Yuhong
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND INFORMATION TECHNOLOGY APPLICATIONS (MEITA 2016), 2017, 107 : 281 - 284
  • [46] PARAMETRIC EULER SUMS OF HARMONIC NUMBERS
    Quan, Junjie
    Wang, Xiyu
    Wei, Xiaoxue
    Xu, Ce
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (04) : 1033 - 1051
  • [47] On congruences related to central binomial coefficients, harmonic and Lucas numbers
    Koparal, Sibel
    Omur, Nese
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (05) : 973 - 985
  • [48] Some Identities of Harmonic and Hyperharmonic Fibonacci Numbers
    Cetin, Mirac
    Kizilates, Can
    Yesil Baran, Fatma
    Tuglu, Naim
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (02): : 493 - 504
  • [49] Generalization of harmonic sums involving inverse binomial coefficients
    Ripon, Sarowar Morshed
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (10) : 821 - 835
  • [50] BINOMIAL SUMMATION FORMULAE CONCERNING HARMONIC NUMBERS
    Guo, Dongwei
    Zhu, Yingming
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2024, 25 (03): : 171 - 179