BINOMIAL SUMS WITH HARMONIC AND FIBONACCI NUMBERS

被引:0
|
作者
Duran, Omer [1 ]
Omur, Nese [1 ]
Koparal, Sibel [2 ]
机构
[1] Kocaeli Univ, Dept Math, TR-41380 Kocaeli, Turkiye
[2] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkiye
来源
JOURNAL OF SCIENCE AND ARTS | 2024年 / 02期
关键词
Fibonacci numbers; harmonic numbers; generating function;
D O I
10.46939/J.Sci.Arts-24.2-a13
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we define new sequence Sn(a, n (a, b) with parameters a and b with the help of the generalized harmonic numbers. Also, we get some new sums involving harmonic, Fibonacci and Lucas numbers.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 50 条
  • [21] Fibonacci numbers that are not sums of two prime powers
    Luca, F
    Stanica, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 1887 - 1890
  • [22] On perfect powers that are sums of two Fibonacci numbers
    Luca, Florian
    Patel, Vandita
    JOURNAL OF NUMBER THEORY, 2018, 189 : 90 - 96
  • [23] Alternating sums of reciprocal generalized Fibonacci numbers
    Kuhapatanakul, Kantaphon
    SPRINGERPLUS, 2014, 3
  • [24] Algebraic independence of sums of reciprocals of the Fibonacci numbers
    Nishioka, K
    Tanaka, A
    Toshimitsu, T
    MATHEMATISCHE NACHRICHTEN, 1999, 202 : 97 - 108
  • [25] Fibonacci numbers which are sums of three factorials
    Bollman, Mark
    Hernandez Hernandez, Santos
    Luca, Florian
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (1-2): : 211 - 224
  • [26] Sums of products of generalized Fibonacci and Lucas numbers
    Belbachir, Hacene
    Bencherif, Farid
    ARS COMBINATORIA, 2013, 110 : 33 - 43
  • [27] Powers of two as sums of three Fibonacci numbers
    Eric F. Bravo
    Jhon J. Bravo
    Lithuanian Mathematical Journal, 2015, 55 : 301 - 311
  • [28] Representation of Integers as Sums of Fibonacci and Lucas Numbers
    Park, Ho
    Cho, Bumkyu
    Cho, Durkbin
    Cho, Yung Duk
    Park, Joonsang
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 8
  • [29] On the partial finite sums of the reciprocals of the Fibonacci numbers
    Wang, Andrew Y. Z.
    Wen, Peibo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13
  • [30] On the partial finite sums of the reciprocals of the Fibonacci numbers
    Andrew YZ Wang
    Peibo Wen
    Journal of Inequalities and Applications, 2015