MEEAFusion: Multi-Scale Edge Enhancement and Joint Attention Mechanism Based Infrared and Visible Image Fusion

被引:0
|
作者
Xie, Yingjiang [1 ]
Fei, Zhennan [1 ]
Deng, Da [1 ]
Meng, Lingshuai [1 ]
Niu, Fu [1 ]
Sun, Jinggong [1 ]
机构
[1] PLA, Acad Mil Sci, Syst Engn Inst, Beijing 100166, Peoples R China
关键词
edge enhancement; attention mechanism; image fusion; infrared image; visible image; NETWORK; NEST;
D O I
10.3390/s24175860
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Infrared and visible image fusion can integrate rich edge details and salient infrared targets, resulting in high-quality images suitable for advanced tasks. However, most available algorithms struggle to fully extract detailed features and overlook the interaction of complementary features across different modal images during the feature fusion process. To address this gap, this study presents a novel fusion method based on multi-scale edge enhancement and a joint attention mechanism (MEEAFusion). Initially, convolution kernels of varying scales were utilized to obtain shallow features with multiple receptive fields unique to the source image. Subsequently, a multi-scale gradient residual block (MGRB) was developed to capture the high-level semantic information and low-level edge texture information of the image, enhancing the representation of fine-grained features. Then, the complementary feature between infrared and visible images was defined, and a cross-transfer attention fusion block (CAFB) was devised with joint spatial attention and channel attention to refine the critical supplemental information. This allowed the network to obtain fused features that were rich in both common and complementary information, thus realizing feature interaction and pre-fusion. Lastly, the features were reconstructed to obtain the fused image. Extensive experiments on three benchmark datasets demonstrated that the MEEAFusion proposed in this research has considerable strengths in terms of rich texture details, significant infrared targets, and distinct edge contours, and it achieves superior fusion performance.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Multi-scale Fusion of Stretched Infrared and Visible Images
    Jia, Weibin
    Song, Zhihuan
    Li, Zhengguo
    SENSORS, 2022, 22 (17)
  • [42] Multiscale feature learning and attention mechanism for infrared and visible image fusion
    Gao, Li
    Luo, Delin
    Wang, Song
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (02) : 408 - 422
  • [43] Infrared and visible image fusion network based on low-light image enhancement and attention mechanism
    Jinbo Lu
    Zhen Pei
    Jinling Chen
    Kunyu Tan
    Qi Ran
    Hongyan Wang
    Signal, Image and Video Processing, 2025, 19 (6)
  • [44] OMOFuse: An Optimized Dual-Attention Mechanism Model for Infrared and Visible Image Fusion
    Yuan, Jianye
    Li, Song
    MATHEMATICS, 2023, 11 (24)
  • [45] Infrared and visible image fusion using multi-scale pyramid network
    Zuo, Fengyuan
    Huang, Yongdong
    Li, Qiufu
    Su, Weijian
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (05)
  • [46] SADFusion: A multi-scale infrared and visible image fusion method based on salient-aware and domain-specific
    Yang, Zhijia
    Gao, Kun
    Mao, Yuxuan
    Zhang, Yanzheng
    Zhang, Xiaodian
    Hu, Zibo
    Wang, Junwei
    Wang, Hong
    Li, Shuzhong
    INFRARED PHYSICS & TECHNOLOGY, 2023, 135
  • [47] Infrared and Visible Image Fusion with Significant Target Enhancement
    Huo, Xing
    Deng, Yinping
    Shao, Kun
    ENTROPY, 2022, 24 (11)
  • [48] Multi-scale decomposition based fusion of infrared and visible image via total variation and saliency analysis
    Ma, Tao
    Ma, Jie
    Fang, Bin
    Hu, Fangyu
    Quan, Siwen
    Du, Huajun
    INFRARED PHYSICS & TECHNOLOGY, 2018, 92 : 154 - 162
  • [49] MSCS: Multi-stage feature learning with channel-spatial attention mechanism for infrared and visible image fusion
    Huang, Zhenghua
    Xu, Biyun
    Xia, Menghan
    Li, Qian
    Zou, Lianying
    Li, Shaoyi
    Li, Xi
    INFRARED PHYSICS & TECHNOLOGY, 2024, 142
  • [50] RAN: Infrared and Visible Image Fusion Network Based on Residual Attention Decomposition
    Yu, Jia
    Lu, Gehao
    Zhang, Jie
    ELECTRONICS, 2024, 13 (14)