MEEAFusion: Multi-Scale Edge Enhancement and Joint Attention Mechanism Based Infrared and Visible Image Fusion

被引:0
|
作者
Xie, Yingjiang [1 ]
Fei, Zhennan [1 ]
Deng, Da [1 ]
Meng, Lingshuai [1 ]
Niu, Fu [1 ]
Sun, Jinggong [1 ]
机构
[1] PLA, Acad Mil Sci, Syst Engn Inst, Beijing 100166, Peoples R China
关键词
edge enhancement; attention mechanism; image fusion; infrared image; visible image; NETWORK; NEST;
D O I
10.3390/s24175860
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Infrared and visible image fusion can integrate rich edge details and salient infrared targets, resulting in high-quality images suitable for advanced tasks. However, most available algorithms struggle to fully extract detailed features and overlook the interaction of complementary features across different modal images during the feature fusion process. To address this gap, this study presents a novel fusion method based on multi-scale edge enhancement and a joint attention mechanism (MEEAFusion). Initially, convolution kernels of varying scales were utilized to obtain shallow features with multiple receptive fields unique to the source image. Subsequently, a multi-scale gradient residual block (MGRB) was developed to capture the high-level semantic information and low-level edge texture information of the image, enhancing the representation of fine-grained features. Then, the complementary feature between infrared and visible images was defined, and a cross-transfer attention fusion block (CAFB) was devised with joint spatial attention and channel attention to refine the critical supplemental information. This allowed the network to obtain fused features that were rich in both common and complementary information, thus realizing feature interaction and pre-fusion. Lastly, the features were reconstructed to obtain the fused image. Extensive experiments on three benchmark datasets demonstrated that the MEEAFusion proposed in this research has considerable strengths in terms of rich texture details, significant infrared targets, and distinct edge contours, and it achieves superior fusion performance.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Infrared and visible image fusion using multi-scale pyramid network
    Zuo, Fengyuan
    Huang, Yongdong
    Li, Qiufu
    Su, Weijian
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (05)
  • [32] An Image Enhancement Method Based on Multi-scale Fusion
    Wang, Haoming
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT I, 2022, 1700 : 37 - 42
  • [33] Infrared and visible image features enhancement and fusion using multi-scale top-hat decomposition
    Li, Yufeng
    Feng, Xiaoyun
    Xu, Mingwei
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2012, 41 (10): : 2824 - 2832
  • [34] Infrared and visible images fusion based on improved multi-scale structural fusion
    Long Z.
    Deng Y.
    Xie J.
    Wang R.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (07): : 1101 - 1110
  • [35] MIAFusion: Infrared and Visible Image Fusion via Multi-scale Spatial and Channel-Aware Interaction Attention
    Lin, Teng
    Lu, Ming
    Jiang, Min
    Kong, Jun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 238 - 251
  • [36] An end-to-end multi-scale network based on autoencoder for infrared and visible image fusion
    Liu, Hongzhe
    Yan, Hua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (13) : 20139 - 20156
  • [37] An end-to-end multi-scale network based on autoencoder for infrared and visible image fusion
    Hongzhe Liu
    Hua Yan
    Multimedia Tools and Applications, 2023, 82 : 20139 - 20156
  • [38] MGRCFusion: An infrared and visible image fusion network based on multi-scale group residual convolution
    Zhu, Pan
    Yin, Yufei
    Zhou, Xinglin
    OPTICS AND LASER TECHNOLOGY, 2025, 180
  • [39] MCADFusion: a novel multi-scale convolutional attention decomposition method for enhanced infrared and visible light image fusion
    Zhang, Wangwei
    Dai, Menghao
    Zhou, Bin
    Wang, Changhai
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (08): : 5067 - 5089
  • [40] Infrared and visible image fusion method based on hierarchical attention mechanism
    Li, Qinghua
    Yan, Bao
    Luo, Delin
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)