MEEAFusion: Multi-Scale Edge Enhancement and Joint Attention Mechanism Based Infrared and Visible Image Fusion

被引:0
|
作者
Xie, Yingjiang [1 ]
Fei, Zhennan [1 ]
Deng, Da [1 ]
Meng, Lingshuai [1 ]
Niu, Fu [1 ]
Sun, Jinggong [1 ]
机构
[1] PLA, Acad Mil Sci, Syst Engn Inst, Beijing 100166, Peoples R China
关键词
edge enhancement; attention mechanism; image fusion; infrared image; visible image; NETWORK; NEST;
D O I
10.3390/s24175860
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Infrared and visible image fusion can integrate rich edge details and salient infrared targets, resulting in high-quality images suitable for advanced tasks. However, most available algorithms struggle to fully extract detailed features and overlook the interaction of complementary features across different modal images during the feature fusion process. To address this gap, this study presents a novel fusion method based on multi-scale edge enhancement and a joint attention mechanism (MEEAFusion). Initially, convolution kernels of varying scales were utilized to obtain shallow features with multiple receptive fields unique to the source image. Subsequently, a multi-scale gradient residual block (MGRB) was developed to capture the high-level semantic information and low-level edge texture information of the image, enhancing the representation of fine-grained features. Then, the complementary feature between infrared and visible images was defined, and a cross-transfer attention fusion block (CAFB) was devised with joint spatial attention and channel attention to refine the critical supplemental information. This allowed the network to obtain fused features that were rich in both common and complementary information, thus realizing feature interaction and pre-fusion. Lastly, the features were reconstructed to obtain the fused image. Extensive experiments on three benchmark datasets demonstrated that the MEEAFusion proposed in this research has considerable strengths in terms of rich texture details, significant infrared targets, and distinct edge contours, and it achieves superior fusion performance.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Multi-scale unsupervised network for infrared and visible image fusion based on joint attention mechanism
    Xu, Dongdong
    Zhang, Ning
    Zhang, Yuxi
    Li, Zheng
    Zhao, Zhikang
    Wang, Yongcheng
    Infrared Physics and Technology, 2022, 125
  • [2] Multi-scale unsupervised network for infrared and visible image fusion based on joint attention mechanism
    Xu, Dongdong
    Zhang, Ning
    Zhang, Yuxi
    Li, Zheng
    Zhao, Zhikang
    Wang, Yongcheng
    INFRARED PHYSICS & TECHNOLOGY, 2022, 125
  • [3] Fusion of visible and infrared images based on multi-scale image enhancement
    Sun, Ming-Chao
    Zhang, Chong
    Liu, Jing-Hong
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2012, 42 (03): : 738 - 742
  • [4] Infrared and Visible Image Fusion Based on Contrast Enhancement and Multi-scale Edge-preserving Decomposition
    Zhu Haoran
    Liu Yunqing
    Zhang Wenying
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (06) : 1294 - 1300
  • [5] EgeFusion: Towards Edge Gradient Enhancement in Infrared and Visible Image Fusion With Multi-Scale Transform
    Tang, Haojie
    Liu, Gang
    Qian, Yao
    Wang, Jiebang
    Xiong, Jinxin
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 385 - 398
  • [6] Prompt learning and multi-scale attention for infrared and visible image fusion
    Li, Yanan
    Ji, Qingtao
    Jiao, Shaokang
    INFRARED PHYSICS & TECHNOLOGY, 2025, 145
  • [7] Infrared and visible image fusion based on multi-scale dense attention connection network
    Chen Y.
    Zhang J.
    Wang Z.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (18): : 2253 - 2266
  • [8] Infrared and visible image fusion enhancement technology based on multi-scale directional analysis
    Zhou Xin
    Liu Rui-an
    Chen Fin
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 4035 - 4037
  • [9] Infrared and visible image fusion based on hybrid multi-scale decomposition and adaptive contrast enhancement
    Luo, Yueying
    He, Kangjian
    Xu, Dan
    Shi, Hongzhen
    Yin, Wenxia
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 130
  • [10] Integrating Parallel Attention Mechanisms and Multi-Scale Features for Infrared and Visible Image Fusion
    Xu, Qian
    Zheng, Yuan
    IEEE ACCESS, 2024, 12 : 8359 - 8372