Cross-Subject EEG-Based Emotion Recognition Using Deep Metric Learning and Adversarial Training

被引:1
|
作者
Alameer, Hawraa Razzaq Abed [1 ]
Salehpour, Pedram [1 ]
Hadi Aghdasi, Seyyed [1 ]
Feizi-Derakhshi, Mohammad-Reza [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Dept Comp Engn, Tabriz 51666, Iran
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Electroencephalography; Emotion recognition; Brain modeling; Training; Accuracy; Feature extraction; Data models; Deep learning; Adversarial machine learning; EEG signals; cross-subject emotion recognition; deep metric learning; adversarial learning;
D O I
10.1109/ACCESS.2024.3458833
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, due to individual differences and the non-stationarity properties of EEG signals, developing an accurate cross-subject EEG emotion recognition method is in demand. Despite many successful attempts, the accuracy of generalized models across subjects is inferior compared to those limited to a specific individual. Moreover, most cross-subject training methods assume that the unlabeled data from target subjects is available. However, this assumption does not hold in practice. To address these issues, this paper presents a novel deep similarity learning loss specific to the emotion recognition task. This loss function minimizes intra-emotion class variations of EEG segments with different subject labels while maximizing inter-emotion class variations. Another key aspect of the proposed semantic embedding loss is that it preserves the order of emotion classes in the learned embedding. Specifically, it ensures that the embedding space maintains the semantic order of emotions. Also, we integrate the deep similarity learning module with adversarial learning, which helps to learn a subject-invariant representation of EEG signals in an end-to-end training paradigm. We conduct several experiments on three widely used datasets: SEED, SEED-GER, and DEAP. The results confirm that the proposed method effectively learns a subject invariant representation from EEG signals and consistently outperforms the state-of-the-art (SOTA) peer methods.
引用
收藏
页码:130241 / 130252
页数:12
相关论文
共 50 条
  • [31] EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network
    Cui, Jian
    Lan, Zirui
    Sourina, Olga
    Muller-Wittig, Wolfgang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7921 - 7933
  • [32] Personal-Zscore: Eliminating Individual Difference for EEG-Based Cross-Subject Emotion Recognition
    Chen, Huayu
    Sun, Shuting
    Li, Jianxiu
    Yu, Ruilan
    Li, Nan
    Li, Xiaowei
    Hu, Bin
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2077 - 2088
  • [33] Multimodal Deep Learning Model for Subject-Independent EEG-based Emotion Recognition
    Dharia, Shyamal Y.
    Valderrama, Camilo E.
    Camorlinga, Sergio G.
    2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE, 2023,
  • [34] Unsupervised Time-Aware Sampling Network With Deep Reinforcement Learning for EEG-Based Emotion Recognition
    Zhang, Yongtao
    Pan, Yue
    Zhang, Yulin
    Zhang, Min
    Li, Linling
    Zhang, Li
    Huang, Gan
    Su, Lei
    Liu, Honghai
    Liang, Zhen
    Zhang, Zhiguo
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (03) : 1090 - 1103
  • [35] Cross-Subject Emotion Recognition Using Deep Adaptation Networks
    Li, He
    Jin, Yi-Ming
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT V, 2018, 11305 : 403 - 413
  • [36] Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition
    Shen, Xinke
    Liu, Xianggen
    Hu, Xin
    Zhang, Dan
    Song, Sen
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2496 - 2511
  • [37] Exploring EEG Features in Cross-Subject Emotion Recognition
    Li, Xiang
    Song, Dawei
    Zhang, Peng
    Zhang, Yazhou
    Hou, Yuexian
    Hu, Bin
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [38] Gusa: Graph-Based Unsupervised Subdomain Adaptation for Cross-Subject EEG Emotion Recognition
    Li, Xiaojun
    Chen, C. L. Philip
    Chen, Bianna
    Zhang, Tong
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (03) : 1451 - 1462
  • [39] Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
    Zuo, Xin
    Zhang, Chi
    Hamalainen, Timo
    Gao, Hanbing
    Fu, Yu
    Cong, Fengyu
    ENTROPY, 2022, 24 (09)
  • [40] Unsupervised Learning in Reservoir Computing for EEG-Based Emotion Recognition
    Fourati, Rahma
    Ammar, Boudour
    Sanchez-Medina, Javier
    Alimi, Adel M.
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) : 972 - 984