Modelling and parameter identification of penicillin fermentation using physics-informed neural networks

被引:0
|
作者
Zhao, Siqi [1 ]
Zhao, Zhonggai [1 ]
Liu, Fei [1 ]
机构
[1] Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi, 214122, Peoples R China
关键词
gated recurrent unit (GRU); long short term memory (LSTM); neural networks; penicillin fermentation; physical-informed neural networks (PINN);
D O I
10.1002/cjce.25510
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
With the rapid development of machine learning technology and computer science, artificial neural networks have become an effective and popular method in the existing modelling research of penicillin fermentation process. Although these networks can capture the complexity of the fermentation process, they may lead to overfitting and require large amounts of data. In addition, the inference of the model on the data may not satisfy the physical laws. In this paper, a penicillin fermentation modelling method based on physics-informed neural networks is proposed. The fermentation mechanism equations are combined with the neural networks to develop the model as constraints. First, a general penicillin fermentation mechanism model is built according to known prior knowledge, and then its unknown nonlinear dynamic parameters are identified by physics-informed neural networks. Finally, the successfully trained model exhibits a high prediction accuracy, which not only satisfies the physical laws in the loss function, but also verifies the effectiveness of the proposed mechanism model.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [42] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [43] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [44] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [45] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [46] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [47] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [48] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [49] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [50] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59