Modelling and parameter identification of penicillin fermentation using physics-informed neural networks

被引:0
|
作者
Zhao, Siqi [1 ]
Zhao, Zhonggai [1 ]
Liu, Fei [1 ]
机构
[1] Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi, 214122, Peoples R China
关键词
gated recurrent unit (GRU); long short term memory (LSTM); neural networks; penicillin fermentation; physical-informed neural networks (PINN);
D O I
10.1002/cjce.25510
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
With the rapid development of machine learning technology and computer science, artificial neural networks have become an effective and popular method in the existing modelling research of penicillin fermentation process. Although these networks can capture the complexity of the fermentation process, they may lead to overfitting and require large amounts of data. In addition, the inference of the model on the data may not satisfy the physical laws. In this paper, a penicillin fermentation modelling method based on physics-informed neural networks is proposed. The fermentation mechanism equations are combined with the neural networks to develop the model as constraints. First, a general penicillin fermentation mechanism model is built according to known prior knowledge, and then its unknown nonlinear dynamic parameters are identified by physics-informed neural networks. Finally, the successfully trained model exhibits a high prediction accuracy, which not only satisfies the physical laws in the loss function, but also verifies the effectiveness of the proposed mechanism model.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Identification of chloride diffusion coefficient in concrete using physics-informed neural networks
    Wan, Yutong
    Zheng, Wenzhong
    Wang, Ying
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 393
  • [12] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [13] Parameter identification for a damage phase field model using a physics-informed neural network
    Rojas, Carlos J. G.
    Boldrini, Jos L.
    Bittencourt, Marco L.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2023, 13 (03)
  • [14] Parameter identification for a damage phase field model using a physics-informed neural network
    Carlos J.G.Rojas
    Jos L.Boldrini
    Marco L.Bittencourt
    Theoretical & Applied Mechanics Letters, 2023, 13 (03) : 229 - 246
  • [15] A physics-informed neural networks framework for model parameter identification of beam-like structures
    Teloli, Rafael de O.
    Tittarelli, Roberta
    Bigot, Mael
    Coelho, Lucas
    Ramasso, Emmanuel
    Le Moal, Patrice
    Ouisse, Morvan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [16] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [17] Discontinuity Computing Using Physics-Informed Neural Networks
    Liu, Li
    Liu, Shengping
    Xie, Hui
    Xiong, Fansheng
    Yu, Tengchao
    Xiao, Mengjuan
    Liu, Lufeng
    Yong, Heng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [18] Predicting Voltammetry Using Physics-Informed Neural Networks
    Chen, Haotian
    Katelhon, Enno
    Compton, Richard G.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (02): : 536 - 543
  • [19] Discontinuity Computing Using Physics-Informed Neural Networks
    Li Liu
    Shengping Liu
    Hui Xie
    Fansheng Xiong
    Tengchao Yu
    Mengjuan Xiao
    Lufeng Liu
    Heng Yong
    Journal of Scientific Computing, 2024, 98
  • [20] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,